

1

Abstract – In today’s fast-paced and technology driven world,
Internet commerce has become a de-facto standard. Nowadays
there are a lot of options available for a customer over the Internet.
In order to be a successful seller online, the provider should
provide great customer experience.

Shopping experience via the Internet requires applications to
run with agility and performance. Moreover, the applications
should be consistently performing with 100% uptime. Any
downtime can cause heavy loss as purchases happen at a time that
is convenient to the customer 24 hours 7 days a week.

To ensure that the applications that support business processes
run continuously, constant monitoring of the environment in
which the application is running needs to be monitored. This
monitoring has to be proactive and should be able to predict
chances of failures and bottlenecks that may affect the business
process, hence predictive monitoring.

Therefore, in this paper, we are going to be examining the
importance of predictive analytics on data center monitoring by
discussing statistical-based and machine learning models that can
be used to learn from system performance metric data. In
addition, we are going to look into how we can use Elasticsearch,
Beats, and Kibana to collect, analyze, and display data.

Index Terms: Data Center Monitoring, Predictive Analytics, Logistic
Regression, Log File, System Performance Metrics

I. INTRODUCTION
The evolution of the Internet has paved the way for

numerous businesses of varied types and sizes to be a success
in today’s fast-paced and technology-driven world. Even
though the Internet, originally named Arpanet, started off as a
research project funded by the U.S. military [1], it “has
expanded beyond the United States to every corner of the
globe” [1], giving consumers access to a wide variety of
information right at their fingertips.

In addition, the Internet also provided and continues to be a
platform for many businesses to conduct their business
processes online in order to make profit. This Internet facility
is commonly known as ecommerce. According to an article
provided on the Salesforce website, ecommerce, also known
as electronic commerce, “refers to the process of conducting
transactions through the Internet” [2]. In order to utilize this
facility, businesses develop ecommerce applications that
support their business processes. Automation of these business
processes and steps are enabled through multiple technologies.
These technologies run on either privately owned data centers
or on cloud data centers.

Nowadays, with easy access to the Internet and most
businesses selling products and services online, people prefer
shopping online rather than take the time to go to a store. For
example, Black Friday and Cyber Monday are the two most
popular days in the United States where people do an
excessive amount of shopping to prepare for the holiday
season. In fact, “consumers spent a total of $12.8 billion
online in the U.S. during the five-day period from
Thanksgiving through Cyber Monday in 2016” [3].

In order to support such high online traffic, businesses must
be able to keep their ecommerce application continuously
running by proactively monitoring the data center in which
their application is deployed in. This is an important and
essential task for any business that doesn’t want to lose money
and instead wants to ensure that the technologies used to build
an application are scalable and resilient. In fact, according to
a white paper written by Emerson, “the average cost of data
center downtime was approximately $5,600 per minute” [4]
based on a study conducted in 2011. Network failure, security,
power failure, and lack of scalability [5] are the few issues that
can arise in the data center and thus cause an application to
stop working costing businesses hundreds of thousands of
dollars.
 The paper is structured as follows. Section II provides
background information on the importance of data center
monitoring and sets the stage for the rest of the paper. Section
III then provides a description of my project and relevant
background information associated with it. Section IV dives
deeper into the implementation details of the project.
Subsequently, Section V provides the results of the
implementation. Lastly, Section VI wraps up my project and I
also discuss the future work that could be implemented by
using my project as its starting foundation.

II. BACKGROUND INFORMATION

A. Setting the Stage: Scenario
Imagine yourself as an entrepreneur and you have an online

business where you are selling items to customers. Irrespective
of the items that you are selling, you have developed an
ecommerce application for your business and this application
provides certain facilities to ensure great customer experience.
As illustrated in Figure 1, your application provides certain

Amala Chirayil
amala.chirayil@sjsu.edu

(https://github.com/amalachirayil/CS274_Project)

Business Context Aware Data Center
Monitoring

2

facilities such as allowing a customer to search for a product,
add the product to a shopping cart, make a payment, and
finally place an order.

Now, assume that you have installed your ecommerce
application on a set of nodes in a large data center. Within
these set of nodes, you might also have other applications
running and other applications may be coming in ready to
execute. In order for your application to run seamlessly, it
requires a certain amount of compute and storage. There is a
high chance that your application will not require 100% of the
compute and storage resources all the time which is why the
computers’ resources are being shared across many
applications. So, over a period of time, you can collect system
log information in order to analyze the patterns of compute
and storage usage. For example, during the holiday season,
your application may get a large number of hits so during this
time your application requires a high amount of compute and
storage power. During the off-season, your application may
get hits, but may not require as much compute and storage
power than during the peak season. Then, the question that
arises is that, during these hits, how will you be able to ensure
that these resources will be available all the time. This is the
problem that I am trying to address with my project.

For this purpose, we need to proactively monitor data center
resources and not after the fact. For instance, suppose your
application is being used by hundreds of customers and in a
split-second your application stops working. Now that you’ve
realized your application has stopped working, you go to
address the problem, but that is after the fact and in that time,
you have already lost customers and money. However, if you
had already known that this was going to happen in the near
future, you could have proactively performed some
maintenance to prevent this issue from occurring.

B. Related Work
My project’s foundation was inspired by my internship

experience at a large corporation and built after looking into
different research papers, journal articles, and products on data
center monitoring and log file analysis. AppDynamics is one

product that exists in the market today [6]. AppDynamics is a
leading Application Performance Management (APM) tool
that monitors your application infrastructure and provides
code level visibility. As showcased in Figure 2, a software
called an Agent is installed on Application Servers and is
responsible for collecting system performance metrics. These
metrics are then sent to a Controller server where data is
processed. An end user, such as a data analyst, can view the
data through a web interface to examine what’s going on
behind the scenes. As a brief summary, this product “learns”
application behavior and automatically sets baselines and
alerts when the deviation from the baseline is an anomaly [6].

III. PROJECT OVERVIEW

A. Problem Statement
As mentioned in the previous section, the problem that I am

trying to address with my project is business process

Facility Facility

Facility

Search for a
product

Place the item in
shopping cart Make a payment

Place an order

Facility

Figure 1: Your ecommerce application provides certain facilities to ensure great customer experience

Figure 2: AppDynamics APM tool

3

interruption caused by inadequate management of compute,
storage, and network resources in a data center. This problem
affects businesses that are dependent on online applications
for conducting their business processes. It’s important to
address this problem because ensuring scalability and
resilience of applications provides great experience for the
customer and avoids loss of revenue for the business.

B. Proposed Solution
We will be addressing the problem mentioned before by

proactively monitoring data centers to ensure timely
alerts/automated actions to scale compute, storage, and
network resources in a data center. For this purpose, as
depicted in Figure 3, we need to collect and analyze system
and database log data so that we can learn from available
memory, CPU, disk space, and network traffic in order to
predict what kind of situations can arise based on the usage of
compute and storage resources so that appropriate
maintenance (e.g. add more virtual machines if it’s in a cloud
environment) can be done before the application stops
running.

After the system data is collected with the help of two Beats
modules (Filebeat and Metricbeat), which are “lightweight
data shippers” that are used to capture operational data, this
data is stored in Elasticsearch, which is an “open source search
and analytics engine for all types of data” [7]. From
Elasticsearch, the necessary data is extracted with the help of
APIs in order to prepare training and testing datasets for the
machine learning models. To find data center resources, such
as compute and storage, and their effects on resource
contention that may lead to non-performance of the
application, a classifier model was deemed appropriate. The
two machine learning models that I decided to use was a
standard logistic regression model and a multinomial logistic
regression model.

Lastly, predictions are captured on a visually appealing

dashboard with the help of Kibana so that timely
alerts/automated actions can take place.

C. Machine Learning Models
In the classification-based methodology, a dataset, known

specifically as a training dataset, is used to form classification
models (classifiers). Then, using these classification models,
test instances are categorized within these classification
models. The key idea in this methodology is that a classifier
can be learnt from a given data set and easily distinguish
between two or more classes. Standard and multinomial
logistic regression models are the two classification and
statistical based methods [8,9] that I used for my project.

i. Standard Logistic Regression Model: A standard

logistic regression model is a statistical model that
is used within the machine learning domain in
order to solve binary classification problems. This
model predicts the probability of an occurrence
utilizing a logit function, which is defined as f(x) =
1/1+e-x. Maximum Likelihood Estimation (MLE)
is used for estimating the parameters of a model
which results in the following logistic regression
equation: y = e(b0+b1*x)/(1 + eb0 + b1*x), where y is the
predicted output, b0 is the bias, b1 is the
coefficient for a single input value x. If more than
one input value x is being used, logistic regression
model will estimate a coefficient for each input.

ii. Multinomial Logistic Regression Model: A
multinomial logistic regression model is similar to
a standard logistic regression model, but the latter
model is utilized in situations where the dependent
variable is nominal with more than two levels. It is
used to explain the relationship between one or

Figure 3: Architecture Diagram of Proposed Solution

4

more independent variables and one multi-class
dependent variable.

IV. IMPLEMENTATION
To further understand the full capacity and potential of

predictive analytics on data center monitoring, I decided to
implement two of the statistical-based methods discussed
in the previous section. However, prior to training and
testing these statistical-based methods, I had to install and
learn how to use Elasticsearch, Beats, and Kibana in order
to collect, extract, and display the required system
information. Please note a larger image size of each image
in this section can be found in the Appendix.

A. Data Collection: Elasticsearch, Kibana, Beats
After installing Elasticsearch, Kibana, Filebeat and

Metricbeat from the Elastic website, I started the process of
collecting my local system performance metric data. The
first step was to start Elasticsearch by executing the
command “./bin/elasticsearch” from the appropriate
directory in terminal, as showcased in Figure 4a. Figure 4b
represents the output seen after executing this command. In
order to ensure that Elasticsearch was running, I navigated
to https://localhost:9200 to see if the message in Figure 4c
appears.

The next step was to start Kibana by executing a similar
command to the one used to start Elasticsearch,
“./bin/kibana” from the appropriate directory in a new
terminal, as showcased in Figure 5a. Figure 5b represents the
output seen after executing this command. In order to ensure
that Kibana was running and a connection was established
with Elasticsearch, I navigated to https://localhost:5601 to see
if I got a similar output to that of Figure 5c.

Figure 4a: Starting Elasticsearch

Figure 4b: Output while starting Elasticsearch

Figure 4c: Verification that Elasticsearch is running

Figure 5a: Starting Kibana

Figure 5b: Output while starting Kibana

5

As depicted in Figure 3, the Metricbeat module was used to

collect system performance metric data from my local system.
Similar to Elasticsearch and Kibana, the command
“./metricbeat -e” was executed from the appropriate directory
in a new terminal, as showcased in Figure 6a. Figure 6b
represents the output seen after executing this command. Once
a connection to Elasticsearch gets established, an inverted
index is created and stores all of the system data based on the
fields defined in Metricbeat module [7]. Figure 6c represents
all the available and newly created inverted indices that are
present. Please note that the inverted index titled
“metricbeat-7.4.2-
2019.11.17-000001” is the index that contains my local
system performance metric data.

In addition to the Metricbeat module, the Filebeat module

was used to collect log data from MongoDB which was
utilized in an ecommerce application. Since the focus of this
project was not to create an ecommerce application, I used an
application that was developed using the MERN stack by
Rizwan Khan (https://github/com/Rizwan17/mystore-front-
end and https://github.com/Rizwan17/mystore-back-end) to
collect MongoDB log data. In order to be able to collect
database log data, the MongoDB module specified within
Filebeat had to be enabled as showcased in Figure 7a.
The command “./filebeat -c filebeat.yaml -e” was executed
from the appropriate directory in a new terminal. Figure 7b
represents the output seen after executing this command. Once
a connection to Elasticsearch gets established, an inverted
index is created and stores all of MongoDB log data based on
the fields defined in the Filebeat module [7]. The title of the
inverted index that stores the MongoDB log data is “filebeat-
7.4.2-2019.11.16-000001” as can be seen in Figure 6c.

B. Implementation of Machine Learning Models
i. Standard Logistic Regression Model: The

standard logistic regression model was trained on
a dataset that consisted of performance metrics
of 1,750 virtual machines from GWA-T-12
Bitbrains distributed data center [10]. Please
refer to Table 1 to see the format of this data.

Using Python, pandas, numpy, seaborn, and
functions from the sklearn library, I trained two

Figure 5c: Verification that Kibana is running

Figure 6a: Starting Metricbeat

Figure 6c: Inverted indices

Figure 7a: Configuring MongoDB module within Filebeat

Figure 7b: Output while starting filebeat

Figure 6b: Output while starting Metricbeat

6

standard logistic regression models, one for CPU
usage and another one for Memory usage. After
training these two models, I tested them using
performance metrics from my local system to
exhibit and simulate how predictive analytics
would work in real-time. Table 2 displays the
format of the data captured by MetricBeat of my
local system. The code can be found on my
GitHub page and is titled as “CPU Logistic
Regression Model” and “Memory Logistic
Regression Model” for the CPU model and
memory model, respectively.

Name Description
Timestamp number of milliseconds

since 1970-01-01
CPU cores Number of virtual CPU

cores provisioned
CPU capacity The capacity of the CPUs

in terms of MHz
CPU usage In terms of MHz
CPU usage In terms of percentage
Memory provisioned Capacity of the memory in

the VM in terms of KB
Memory usage Memory that is actively

used in terms of KB
Disk read throughput In terms of KB/s
Disk write throughput In terms of KB/S
Network received
throughput

In terms of KB/s

Network transmitted
throughput

In terms of KB/s

Name Description
Timestamp YYYY-MM-DD
system.cpu.cores Number of CPU cores

provisioned
system.cpu.user.pct In terms of percentage
system.memory.total In terms of bytes
system.memory.actual.free In terms of bytes
system.diskio.read.count Total number of reads

completed successfully
system.diskio.write.count Total number of writes

completed successfully

ii. Multinomial Logistic Regression Model: The
multinomial logistic regression model was
trained on a dataset that consisted of the
performance metrics of a MongoDB database
from a staging environment and data collected
from an ecommerce application that I used.

Using Python, pandas, numpy, seaborn, and
functions from the sklearn library, I trained a
single multinomial logistic regression model.
This model was chosen because the target
variable can be one of 3 classes (tech stack is

stressed, tech stack is about to be stressed, tech
stack not stressed) and severity level of the
mongo log has 4 labels. I split this dataset into
75% training dataset and 25% testing dataset.
Table 3 showcases the format for this data. The
code can be found on my GitHub page and is
titled as “Multinomial Logistic Regression
Model to Determine Stress Level of Tech Stack.”

Name Description
Timestamp YYYY-MM-

DD:HH:mm:ss
Severity 4 types (F-Fatal, E-Error,

W-Warning, I-
Informational)

Component E.g. NETWORK,
ACCESS

Context E.g. initandlisten
Message E.g. waiting for

connections on port 2701.

V. RESULTS

A. Memory Model
The memory model was trained on 500 data records from
GWA-T-12 Bitbrains and tested on 100 data records from
my local system log. As showcased in the confusion matrix
below, in Figure 8, the model was only able to achieve 28%
accuracy.

B. CPU Model
The CPU model was trained on 500 data records from
GWA-T-12 Bitbrains and tested on 100 data records from
my local system log. As showcased in the confusion matrix
below, in Figure 9, the model was able to achieve 98%
accuracy.

Table 1: GWA-T-12 Bitbrains Dataset Format

Table 2: Local System Metric Dataset Format

Table 3: MongoDB Log Dataset Format

Figure 8: Memory Model Confusion Matrix

7

C. MongoDB Model
The MongoDB model was trained on 75% of 500 records
and tested on the remaining 25%. As showcased in the
confusion matrix in Figure 10, it was only able to achieve
69% accuracy.

D. Real-time Data Visualization
Please refer to Figure 11 in the Appendix to see a snapshot
of the real-time data visualization of my local system.

VI. CONCLUSION AND FUTURE WORK
Through this project, I wanted to address the issue of

business process interruption that are caused by inadequate
management of compute, storage, and network resources in a
data center. I explained the importance of the topic and
provided a detailed description of how I implemented my
solution.

It is known that in the real-world, a system that is 100%
perfect and complete does not exist. There is also something
more to discover and work on. Similarly, with my project I

have listed out a couple of points that I would consider as a
future enhancement and they are as follows:

• Explore other machine learning classification
models such as Support Vector Machine and
Random Forest and see how they perform

• Enhance data visualization by inserting business
process visuals

• Create a mechanism to send alert via email or text
message

• Research data preprocessing methods to preprocess
data prior to using the data as a training and testing
dataset

REFERENCES
[1] Carolyn Duffy Marshall, “The Evolution of the Internet”, Network World,

9, February 2009
[2] Salesforce, “Overview: What is ecommerce?”,

https:/salesforce.com/products/commerce-cloud/resources/what-is-
ecommerce/

[3] Mark Gaydos, “Is Your Data Center Ready for Black Friday and Cyber
Monday Onslaughts”, Industry Perspectives, 17, November 2017

[4] A White Paper from the Experts in Business-Crtical Continuity
(Emerson), “Understanding the Cost of Data Center Downtime: An
Analysis of the Financial Impact on Infrastructure Vulnerability”, White
Paper

[5] Phillipa Gill, Navendu Jain, Nachiappan Nagappan, “Understanding
Network Failures in Data Centers: Measurement, Analysis, and
Implications”, Dept. of Computer Science at University of Toronto,
Microsoft

[6] AppDynamics Business White Paper, “A Modern Approach to
Monitoring Performance in Production”, 2014

[7] Elasticsearch, https://elastic.co
[8] Jeffrey R. Wilson, Kent A. Lorenz “Standard Binary Logistic Regression

Model”, Part of the ICSA Book Series in Statistics book series (ICSABSS,
volume 9)

[9] Dr. Jon Starkweather, Dr. Amanda Kay Moske, “Multinomial Logistic
Regression," UNT

[10] https://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

:

Figure 9: CPU Model Confusion Matrix

Figure 10: MongoDB Model Confusion Matrix

8

APPENDIX

Figure 4a

Figure 4b

9

Figure 4c

Figure 5a

10

Figure 5b

Figure 5c

11

Figure 6a

Figure 6b

12

Figure 6c

Figure 7a

Figure 7b

13

Figure 11

