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ABSTRACT

Privacy-preserving visual recognition is an important area of research that is
gaining momentum in the field of computer vision. In a production environment, it
is critical to have neural network models learn continually from user data. However,
sharing raw user data with a server is less desirable from a regulatory, security and
privacy perspective. Federated learning addresses the problem of privacy-
preserving visual recognition. More specifically, we closely examine and dissect a
framework known as Dual User Adaptation (DUA) presented by Lange et al. at CVPR
2020, due to its novel idea of bringing about user-adaptation on both the server-side
and user device side. Data in the server and user device is predefined into a series of
tasks prior to training and testing. However, since user data is constantly evolving,
it’'s important to see how DUA performs on unseen data or tasks. A few
implementations are also executed to see if the performance of the DUA model can
be improved on unseen data. In addition, two other federated learning frameworks
are implemented to compare how it performs with DUA. Through this research we
show that retraining the classifier layer of the merged model with all data categories
greatly improves the performance for real-world implementation of DUA.
Keywords - Privacy-preserving, Federated Learning, Dual User-Adaptation,

FedAvg, FedProx
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L INTRODUCTION

The ubiquity of smart devices, such as security cameras, phones, and watches, in
today’s technology-driven world has made people’s lives convenient. For example,
lifestyle and fitness apps have been incredibly adopted during the COVID-19 pandemic
lockdowns [1]. These apps commonly rely on deep learning models as their primary
engines. The availability of large high-quality datasets is critical to train deep learning
models, and in a production environment, it is especially important to have the model
continually learn new tasks from streams of user data to maintain the relevancy and
performance of the model and the app [2]. Additionally, user data could potentially
reduce huge investments that go into building a manually curated and labeled dataset
for training models, and this is especially useful in scenarios where most of the data is
housed within data islands [3]. However, it is not always in the interest of the user to
send raw user data to a central server due to privacy concerns and vulnerability of data
leaks due to cyberattacks [4]. Thus, development of privacy-preserving frameworks for
continual and user-personalized learning is of utmost importance.

Privacy-preserving continual learning was popularized in a large scale by the
introduction of federated learning into Google’s Android keyboard in 2017 [5]. Since
then, numerous frameworks have been proposed and deployed, with some designed for
domain-specific applications [6]. Federated learning frameworks can be broadly
classified into two categories based on whether a central server with significant

compute capability is used as a manager to collect deidentified user data (in the form of
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prediction target probabilities or model weights) and perform aggregation and training.
A federated learning framework with such a powerful central server is useful while
developing models that need to be deployed on low-powered devices and for
comparatively less-sensitive user data. However, a central server can be less attractive
to users when the data involves sensitive information such as health records or
financial information. In such cases, a decentralized federated learning framework is
more suitable. Recent examples of centralized federated learning frameworks include
FedAvg [7], FedSVRG [8], Agnostic FL [9] whereas decentralized federated learning
frameworks include SimFL [10], Swarm Learning [11], and Galaxy Federated Learning
[12].

The Dual User Adaptation (DUA) framework was a solution developed by Lange et
al. that closely resembles federated learning [13]. The authors describe a highly scalable
continual learning centralized federated learning framework that 1) avoids sending raw
user data to the central server, and 2) returns a final model that is user-personalized
and not just a server model that learns general trends from data obtained from a pool of
users [13]. To protect users’ privacy, the authors took an unsupervised approach to
personalize models with unlabeled local user images. The authors tested the DUA
framework for image classification application on the MNIST [19] and SVHN [20] and
MIT indoor scenes [21] datasets. However, the DUA framework is domain-agnostic and
should, in theory, be suitable for a wide range of applications. Our research builds upon

the DUA framework by extending its capability to deal with unseen user data through

5
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the following steps: (1) a thorough investigation of the DUA framework, (2) evaluating
server trained (unmerged) and merged models on unseen data, (3) implementing
different model configurations to train and test merged models and evaluate which one
performed the best on unseen data. Through this research we show that retraining the
classifier layer of the merged model with all data categories greatly improves the
performance for real-world implementation of DUA.

The paper is structured as follows. Section II provides an overview of related work
done on privacy-preserving visual recognition. Section III provides background
information on the DUA framework in detail. Subsequently, Section IV provides a
description of the research objective. Section V provides a review of the DUA
framework. Section VI provides information on the preliminary research. Section VII
provides information on the methodology that was taken to meet the research
objective. Section VIII describes the evaluation results of the experiments that were
executed. Lastly, Section IX recounts this research and sets up the building blocks for
future work. This report also includes a supplementary section that provides additional

information on this research project.

IL RELATED WORK
Privacy-preserving visual recognition has become an important area of research in
the field of computer vision as more and more deep neural network models are being

trained on private, sensitive data. Many researchers have and continue to explore this

6
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area of research. As a result, varied solutions have been developed to tackle the
problem of privacy-preserving visual recognition. The adversarial training framework
proposed by Wu et al. [14] is an example of one such solution. Similarly, Papernot et al.,
developed a framework known as Private Aggregation Teacher Ensembles (PATE) [29].
Zhu et al. used PATE as the foundation for their research by focusing on the most
important parameter in PATE and proposed a different algorithm [30]. FedAvg [7] and

FedProx [15] are two federated learning frameworks that also address this issue.

Adversarial Training Framework: The motivation for the study conducted by Wu et
al. came from a growing increase of privacy concern due to the prevalence of smart
surveillance systems [14]. Videos and images captured by these smart devices had to be
uploaded to a centralized cloud server to perform backend analytics to provide
enhanced and tailored user experiences [14]. Cryptographic solutions were not
sufficient to prevent attackers from accessing this data. In addition, users’ privacy was
compromised when authorized analysts mined the data to gather important
information [14]. As the first step towards solving the dilemma of providing user
convenience while still protecting the user’s privacy, Wu et al. incorporated the concept
of differential privacy in the adversarial training framework [14]. The goal of the
adversarial training framework was to optimize target task performance without
compromising users’ data by learning an “active degradation” or transform that can be
applied to raw visual data [14].

1) Brief Overview of Differential Privacy: Differential privacy is a technique that has

7
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been employed by many businesses to keep user data private while collecting and
analyzing user data to improve user experience. This technique involves applying
statistical functions to data to anonymize the data for the purpose of protecting the
data [16]. Applying statistical functions to data inserts random noise to the data
making it more secure than if the data was simply sent as a response to a query in
its raw, original format. However, one of the challenges that is present in differential
privacy is knowing how much noise to add to data [16]. In other words, the amount
of noise is a trade-off. The more noise that is added to data, the more anonymous
that data becomes, but also makes the data less useful. One of the ways in which
differentially private systems try to enforce a privacy guarantee is by enforcing a
maximum privacy loss, known as the privacy budget.

2) Technical Approach/Methodology: Fig. 1 represents the model architecture

diagram of the proposed framework.

3 5
<=
ﬁf, D poonymizes o (X)ﬁ

Video

Privacy

Target Task

Model f. f(X)

X [::> LDegrAac;iavtieon f J

Raw Video

Figure 1: Adversarial Training Framework [taken from Wu et al. (2020)]
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ming,. s Lr(fr(fa(X),Yr) +ymaxy,cp Lp(fo(fa(X)),YB)

Equation 1: Mathematical Equation of Adversarial Training Framework
[taken from Wu et al. (2020)]

The raw video data, X, is first fed into the model and passes through the active
degradation function fq producing the anonymized video f4(X). The anonymized
video is passed to two models, the target task model, fr(fa(X)), and privacy
prediction model, f5(fa(X)), simultaneously during training. The target task
model, fr(fia(X)), was implemented to predict the target task it was trained on.
For example, in this study, the target task was classifying human action. The
privacy prediction model, f5(fa(X)), was implemented to evaluate how well the
model performs on identifying private information from the data. The output of
the target task model, fr(fs(X)), and labels of training data, Y7, are passed to the
target task cost function L7 to get a measure of how well the model performed on
the transformed raw data. The output of the privacy prediction model, fy(fa(X)),
and labels of “privacy-related annotations” [14], Y, are passed to the privacy
budget cost function, Lg, to get a measure of how well privacy has been
preserved [14]. The mathematical equation of this framework can be found in
Equation 1. In this equation, the weight parameter is represented by y and P
represents the family of privacy prediction functions. Based on Fig. 1 and

Equation 1, the entire model is trained end-to-end under the hybrid loss of Lt
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and Lp with the intention of maximizing target task performance while
minimizing privacy breach.

Private k-Nearest Neighbors: Many machine learning algorithms have been trained
using private, sensitive data so they can be used to produce applications best tailored to
its users. However, there is no guarantee that the trained data will remain private. In
fact, overfitting is a prominent issue for many algorithms [29]. This implicit
memorization enables attackers to gain unauthorized access to private information that
can lead to unwanted situations.

According to Papernot et al,, there is a direct and indirect way to attack machine
learning models. The direct approach is by “analyzing model parameters [29]” whereas
the indirect approach is to repeatedly query models to gather as much data as possible.
To protect the privacy of training data, Papernot et al., developed a structured
framework based off the idea of teacher student transfer technique known as Private
Aggregation Teacher Ensembles (PATE) [29]. In this framework, as seen in Fig. 2,
sensitive data is divided into a few disjoint subsets which are fed into teacher models to
train them. The resulting output of the teacher models and unlabeled data is then used
to train a student model. With this approach, even if attackers are aware of the student
model’s internal parameters, the privacy of the training data will be protected since the

student model won’t depend on a single training data point [29].

10
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Not accessible by adversary [ Accessible by adversary

'{ Data 1 '—H Teacher 1
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. Data 2 )—D{ Teacher 2
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Data é ‘> Data3 | Teacher3 Vﬁ Teacher I Heen <4+ Queries
Predicted _| Incomplete
ﬂ Datan P Teachern completion I 7 public Data
[ = Training = -------- > Prediction — . — - Data feeding

Figure 2: PATE [taken from Papernot et al. (2017)]

The key idea behind PATE is to guarantee the privacy of the data by limiting the
access students have to their teachers. For this purpose, Papernot et al. adopted
generative adversarial networks (GANs) to speed up the knowledge transfer between
student and teacher [29]. Zhu et al. observed that the parameter k, which represents the
number of disjoint teachers, is the most important parameter in PATE [30]. In addition,
according to Zhu et al,, if the teacher model is a deep neural network model, then large
amounts of labeled data is required to obtain high performance [30]. However,
obtaining labeled data is an expensive task and choosing a large enough value for k
would be insufficient since it will only generate a very small subset of data. To tackle
this problem, Zhu et al. proposed an algorithm called Private k-Nearest Neighbors
(Private kNN) [30].

Federated Averaging: Federated learning is a term developed by McMahan et al. as

part of their research in providing a decentralized approach to training models by
using user data without compromising the privacy of the data [7]. In a traditional

setting, user data can be sent to a central server to train models which in turn will
11
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produce high performing and user personalized models. However, this poses a threat
to the privacy of the user data. In federated learning, a single server model is shared
among all user devices where the model gets trained on local user data [7]. After the
training is complete, the locally trained models are sent back to the server and
aggregated into a global model, which is again sent back to the user device for further
training and this cycle is repeated continuously.

The Federated Averaging (FedAvg) algorithm was developed by McMahan et al. as
part of their research work in federated learning [7]. A diagram of the FedAvg algorithm
can be seen in Fig. 3. As seen in Fig. 3, this algorithm assumes a setup of a central server
and a total of K users interacting with the central server [7]. In addition, each user j has
a fixed local dataset P;. To begin with, the central server initializes the weights of the
shared global model randomly. Next, a random fraction C of the total number of users K
is taken and the global model is sent out to each of these C users. Once each user has
received the global model parameters, each selected user performs training on local
data and sends the updated model parameters back to the server. After the server
receives the updates, the global model gets updated by averaging all the user updates.

This process continues for multiple rounds.
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SERVER

4. Send global model to users

Wiy

3. Model Averaging using fedavg or fedprox

2. Transfer user model to server
2. Transfer user model to server
2. Transfer user model to server
2. Transfer user model to server

W — 5 0l 0 — 5 w4 W ————— 3 0%, e W, —» 0k
1. Local Training on 1. Local Training on 1. Local Training on 1. Local Training on
user 1 data P, user 2 data P, user 3 data P, user k data P,
User 1 User 2 User 3 Userk

Figure 3: Federated Learning Frameworks - FedAvg [McMahan et al.] & FedProx [Li et al.]

FedProx: Similar to FedAvg [7], FedProx is another solution for federated
learning [15]. Federated learning comes with its own set of challenges. The first
challenge is associated with the variable of system architecture in user devices [15].
For example, there is no guarantee that the devices that are connected to a central
server are going to be composed of the same system architecture. This is an
important attribute to keep in mind when developing a federated learning solution.
The second challenge is related to the data distributed across multiple user devices
[15]. The data contained in user devices can vary greatly. There is a high probability
that data across multiple user devices are non-identical. Li et al developed FedProx

to address these key challenges [15].
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FedProx [15] is closely related to FedAvg [7]. Fig. 3 is also adapted to FedProx. Just
like FedAvg, a fraction of the total number of devices are selected at random. The server
sends the global model to each of the devices in the subset. Training occurs on the local
data and the devices send back the updates to the server where everything is averaged
into the global model. The difference between FedProx and FedAvg is that in FedProx,
each device does a different amount of work depending on its system architecture to

account for system heterogeneity.

IIL. BACKGROUND INFORMATION

The Dual User Adaptation (DUA) framework was developed by Lange et al. as an
innovative solution to the problem of privacy-preserving visual recognition [13].
Closely resembling federated learning, this framework aims to preserve the privacy of
raw user data while still delivering personalized models to the user.

In the DUA framework, unlike in traditional federated learning, user-personalization
occurs both on the server and user device, which is defined by two adaptation
functions, ¥ and ¢, respectively. The DUA framework can be broken down into two
phases. Server S contains a set of N task-specific models, M = {M;, M3, ..., My}, as seen on

the right-hand side of Fig. 4.
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Figure 4: Unsupervised Model Personalization [adapted from Lange et al (2020)]

In the first phase, these models are trained sequentially using task incremental learning
from the labeled data ds[13] Each model in M is dependent upon the current task data
and previous task model, with each subsequent model having its weights initialized at
the start of training to the weights of the model for the previous task. Since the DUA
framework is designed for continual learning, the server learns a new task T, with
corresponding new task data D, after which Dj is discarded and only the model M, is
kept [13]. When a model is trained sequentially, there is a risk that the model may

forget the information it last learned on the previous task it was trained for when the
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model is learning a new task. This risk is coined the term catastrophic forgetting [17].
To address the issue of catastrophic forgetting, the server adopts a model adaptation
strategy known as Incremental Moment Matching (IMM) to train [17]. In statistics,
moments can be described as a robust way of describing a dataset. There are varying
degrees of moments. For instance, the first moment is the mean of a dataset, the second
moment is the average squared distance from 0 of a dataset, and the third moment is
the variance of a dataset. Combining Bayesian neural networks and moments in
statistics, IMM resolves the issue of catastrophic forgetting. IMM is a method developed
by Lee et al. that uses Gaussian posterior to train sequential models through the method
of weight transfer [17]. Mean-IMM is another function of IMM that takes the average of
the parameters of two or more models and is utilized in the merging process [17]. In the
second phase, the task specific models are used to gather priors, or importance weights,
from user data. Then, both task specific models and importance weights are aggregated
to a model using the aggregation function, . As seen on the bottom left-hand side of
Fig. 4, user I receives "M, from the server S where the local adaptation function ¢ is
applied to the model to get a final model *M; = ¢ (d,, “M;). Since the user devices are
resource-limited, training procedures on these devices have been restricted to those

requiring very low computational demands.
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IV. RESEARCH OBJECTIVE

The differentiating factor between the DUA framework and other federated learning
frameworks is that the DUA framework considers user-adaptation both on the server
side and user device side. After thoroughly examining the DUA framework and the
training process provided by the authors [13], I've identified several shortcomings
which I present in detail in Section V. For instance, it was found that the same dataset
was used to train the models in the server and served as user data. Hence, when
important features were extracted from the user data and sent to the server to merge
models, it doesn’t ensure that the models work for unseen data. In this research, unseen
data is defined as data on the user device that constitutes a task or set of tasks that were
not used for model training on the server side. The purpose of this research is to
address this issue and improve the performance of merged models. In addition, while
there were two experiments performed on the MIT indoor scenes dataset [21], there
was no baseline to compare the DUA with in the original publication. For this purpose,
FedAvg [7] and FedProx [15] were implemented to check how well DUA performed on
this task.

A. Challenges and Innovative Aspects of the Research
e The main challenge of this research is identifying the pitfalls of the DUA
framework and introducing improvements to make it robust for unseen data.
The DUA framework incorporates many complex concepts:

o Catastrophic Forgetting [17]
17
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o Incremental Moment Matching (IMM) [17]
o Bayesian Inference [23]

o Prior and Posterior Distribution [23]

o Gaussian Distribution [24]

o Task Incremental Learning [25]

o Continual Learning [26]

o Fisher Information [27]

o Memory Aware Synapses [22]

V. REVIEW OF DUA FRAMEWORK

A. Experiments Conducted on DUA Framework
Unsupervised adaptation, scalability and privacy preserving are the three key
features of the DUA framework [13]. To demonstrate these three key features, a set of
three experiments were performed by Lange et al. on image classification [13]. The first
experiment was performed on the MNIST [19] and SVHN [20] datasets. The last two
experiments were performed on the MIT Indoor Scenes dataset [21].
1) Numbers Experiment: The first experiment involved incrementally training a
Multilayer Perceptron (MLP) model, which consisted of 2 hidden layers of 100 units
each on a series of tasks defined by a combination of the MNIST and SVHN datasets
[13]. Both these datasets are composed of digits that range from 0 to 9. Taking this
into account, a total of 5 tasks were defined for this experiment and each task is
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composed of two digits. Each task is responsible for classifying the specified subset
of digits it contains. Task 1 consists of digits 0 and 1, task 2 consists of digits 2 and 3,
task 3 consists of digits 4 and 5, task 4 consists of digits 6 and 7, and lastly, task 5
consists of digits 8 and 9. Subsequently, each task has corresponding images from
both MNIST and SVHN datasets. For example, task 1 has images from both MNIST
and SVHN that contain 0 and 1. A clear picture of the defined tasks can be found in

Table I.

TABLE I: Tasks of Numbers Experiments

TASKS SUBSET OF DIGITS
1 0,1
2 2,3
3 4,5
4 6,7
5 8,9

In this experiment, the training dataset from both MNIST and SVHN was
parsed into the defined tasks in Table I and used for training the models
sequentially on server S, based on the setup showcased in Fig. 4. To address the
feature of scalability, this experiment considered two users. The first user prefers
SVHN, therefore, the data in this user device only contains the testing dataset from
SVHN parsed into the same tasks as defined in Table I. The second user prefers
MNIST, therefore, the data in this user device only contains the testing dataset from

MNIST parsed into the same tasks as defined in Table I.
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a) Server Training of Models for all Tasks: Complying with the DUA framework,
these tasks are trained incrementally on the server using IMM [13]. This
experiment starts with a MLP model with 10 output nodes as the base model,

as shown in Fig. 5.

. . Head layer — 10 nodes
Input feature Linear layer Linear layer

2352 nodes 100 nodes 100 nodes

Figure 5: Multilayer Perceptron (MLP) Model with 2 hidden layers of 100 nodes each
and 10 output nodes

It's important to note that task 1 is trained differently than all subsequent
tasks because the base model has not been trained on any data yet. Since task
1 is only expecting two outputs, [0,1], the last layer, also known as the
classifier layer or head layer, of the base MLP model is replaced with 2 output

nodes instead of 10, as shown in Fig. 6.
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Input feature Linear layer Linear layer
2352 nodes 100 nodes 100 nodes

Head layer
2 nodes

Figure 6: Multilayer Perceptron (MLP) Model with 2 hidden layers of 100 nodes each
and 2 output nodes

After replacing the head layer, training begins by feeding the model with
mini batches of data, computing loss using the cross-entropy loss function
and using Stochastic Gradient Descent (SGD) as the optimizer to compute the
gradient of the loss with respect to all trainable parameters. Both the training
phase and validation phase is carried off in each epoch for a total of 10
epochs [13]. At the end, the model with the best accuracy gets saved. Fig. 7
showcases the structure of the model, M1, that was trained on task 1. As

shown in Fig. 7, M1 contains 4 layers, and each layer is indicated by its name
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and weight and bias values it holds. For example, “classifier.0.weight” is the
name of the first layer and “v.0.w” represents the weight values that the first
layer contains. Similarly, “v.0.b” represents the bias value that the first layer

contains. The rest of the layers are described in the same manner.

classifier.0.weight: v.0.w

classifier.0.bias: v.0.b

nara classifier.2.weight: v.2.w

classifier.2.bias: v.2.b

classifier.4.weight: v.4.w

classifier.4.bias: v.4.b

Figure 7: Structure of model, M1, trained on task 1

Task 2 is trained differently than task 1. The weights of the model trained
on task 1 will be transferred to the model that is going to be used to train
task 2. Since we want to preserve the model for task 1 and train the classifier
for the new task, we replace the head layer with 2 new units since the
outputs of task 2 are [2, 3]. After replacing the head layer, the model is
initialized with regularized parameters for each layer by setting a few
attributes, that have not been initialized, to 0. The attributes of the
regularized parameters are w, omega, init_val, name, and lambda. The

structure of the model, M2, trained on task 2 can be seen in Fig. 8. As noted in
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Fig. 8, each parameter is regularized. For example, “v.0.w” represents the
parameter value of the first layer and the values (i.e. w: 0, omega:0) following
“v.0.w” represent the regularized parameters of the first layer. The
definitions of each of these attributes is found in Table II. The training
process for task 2 is like the training process in task 1, except for the notable
use of Weighted Stochastic Gradient Descent (SGD). Unlike the traditional
SGD, the Weighted SGD method has additional attributes to consider when

updating the parameter values during backward propagation.

classifier.0.weight: v.0.w ]

classifier.0.bias: v.0.b ]

params classifier.2.weight: v.2.w ]

classifier.2.bias: v.2.b ]

classifier.4.weight: v.4.w ]

classifier.4.bias: v.4.b ]

v.0.w: {w: 0, omega: 0, init_val: data, name: param_name, lambda: lambda_value } ]

/[ v.0.b: {w: 0, omega: 0, init_val: data, name: param_name, lambda: lambda_value } ]

reg_params v.2.w: {w: 0, omega: 0, init_val: data, name: param_name, lambda: lambda_value } ]

v.2.b: {w: 0, omega: 0, init_val: data, name: param_name, lambda: lambda_value } ]

v.4.w: {w: 0, omega: 0, init_val: data, name: param_name, lambda: lambda_value } ]

v.4.b: {w: 0, omega: 0, init_val: data, name: param_name, lambda: lambda_value } ]

Figure 8: Structure of model, M2, trained on task 2
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TABLE II: Attributes of Regularized Parameters

Regularized Parameter Attributes Definition
w Parameter weights
omega Importance weights
init_val Parameter data
name Parameter name
lambda Regularization rate

In Weighted SGD, the parameter values in each layer are updated after
performing a series of operations. Initially, a weighted difference is
computed by subtracting the current weight value of a parameter with the
initial value of the parameter. This weighted difference is then multiplied
with a constant 2, the omega attribute from the regularized parameter, and
lambda. This product is then added to the parameter’s gradient value. If a
momentum is defined and the state of the parameter has not been initialized
yet, a buffer is created which stores a copy of the parameter's gradient value
as part of its initialization. In this case, the value stored in the buffer is the
same as the gradient value, so the gradient value remains the same. If a
momentum is defined and the state of the parameter has already been
initialized, then the value inside the buffer is multiplied with the defined
momentum and added with the parameter's gradient value. In both cases, the
parameter’s data gets updated by adding the gradient data. This process
repeats for all the parameters in each layer of the model. Fig. 9 shows how

the parameter value gets updated with Weighted SGD for the first layer.
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momentum = 0.9

d_p =p.grad.data  # Gradient value of parameter p
curr_weight_val = p.data # Current weight of parameter p

[ v.0.w: {w: 0, omega: 0, init_val: data, name: param_name, lambda: lambda_value } ]

f

parameter (p)

* Each parameter

has a gradient - - ] .
associated with it weight_difference = curr_weight_val — init_val

regularizer = weight_difference * (2 * lambda * omega)

(p.grad.data)

» d_p +=regularizer
d_p +=d_p.mul(momentum)

p.data +=d_p. # Parameter data is updated with gradient data

Figure 9: Example of Weighted SGD for first layer for model, M2

The training and validation phase is carried off in each epoch for a total of 10
epochs. At the end of each validation phase, accuracy is computed, and the
model is saved if it showed improved validation accuracy.

Task 3 is trained like task 2 with a few adjustments. The head layer is
replaced with 2 new units since the expected outputs of task 3 are [4, 5].
Recall, regularized parameters were initialized when the model was being
trained on task 2. Now, these regularized parameters are updated for the
new task. Prior to the update, the regularized parameters for the head layer
are removed. For the existing regularized parameters, omega is updated to 1

and init_val is updated to the data of the parameter. Since the regularized
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parameters of the head layer were removed, it’s initialized with omega to 1
and init_val to the data of the parameter. The regularized parameters of the
model now only consist of three attributes, omega, init_val, and lambda. Fig.
10 showcases the structure of the model trained on task 3, M3. After
updating the regularized parameters, the rest of the training and validation
process is the same as that of task 2 with Weighted SGD and calculation of
average loss and accuracy to find the best model that was trained on task 3.
Furthermore, task 4 and 5 in the same way as task 3. After training is

completed, five models can be found, each one trained on one task.

classifier.0.weight: v.0.w ]

classifier.0.bias: v.0.b ]

params classifier.2.weight: v.2.w ]

classifier.2.bias: v.2.b ]

classifier.4.weight: v.4.w ]

classifier.4.bias: v.4.b ]

v.0.w: { omega: 1, init_val: data, lambda: lambda_value } ]

/[ v.0.b: {omega: 1, init_val: data, lambda: lambda_value } ]

feg_params v.2.w: {omega: 1, init_val: data, lambda: lambda_value } ]

v.2.b: {omega: 1, init_val: data, lambda: lambda_value } ]

v.4.w: {omega: 1, init_val: data, lambda: lambda_value } ]

v.4.b: {omega: 1, init_val: data, lambda: lambda_value } ]

Figure 10: Structure ot model trained on task 3, M3

b) IMM Merging Process: After the server has completed training for each task,

each model is used to calculate user priors, or importance weights (IW), from
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the user dataset, as part of user adaptation. The IW are then sent to the
server to create a merged model for each task with the server trained models
and user priors. In this experiment, there are two users. To illustrate the
merging process in its entirety, the focus will be on user 1, even though the
same method is applied to user 2.

Once the server has finished training on all tasks, a model can be
found for each task. In this experiment, there were 5 tasks so 5 trained
models can be found, as shown on the right-hand side of Fig. 11. Each of the
models is going to be used to calculate IW from the user dataset that
theoretically resides on a user device. This user dataset has been divided into

appropriate tasks beforehand, as shown on the left-hand side of Fig. 11.

user_testsubset_SubsetSVHN_targets[0,1].pth

user_testsubset_SubsetSVHN_targets[2,3].pth

user dataset  — user_testsubset_SubsetSVHN_targets[4,5).pth —— user models

user_testsubset_SubsetSVHN_targets[6,7].pth

user_testsubset_SubsetSVHN_targets(8,9].pth

— e

Figure 11: Each user model is used to extract importance weights from user dataset
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Prior to calculating the IW and merging models, the regularized parameters
for each layer in all models is removed and re-initialized with new attributes
and values. The attributes are omega, prev_omega, and init_val which is
initialized to 0, the previous omega value and the data of the parameter,

respectively. The general structure of each model can be seen in Fig. 12.

classifier.0.weight: v.0.w ]

classifier.0.bias: v.0.b ]

params classifier.2.weight: v.2.w ]

classifier.2.bias: v.2.b ]

classifier.4.weight: v.4.w ]

classifier.4.bias: v.4.b ]

v.0.w: {omega: 0, prev_omega: value, init_val: data } ]

v.0.b: {omega: 0, prev_omega: value, init_val: data } ]

reg_params v.2.w: {omega: 0, prev_omega: value, init_val: data } ]

v.2.b: {omega: 0, prev_omega: value, init_val: data } ]

v.4.w: {omega: 0, prev_omega: value, init_val: data } ]

v.4.b: {omega: 0, prev_omega: value, init_val: data } ]

Figure 12: General structure of each model after regularized parameters are
removed

A merged model is computed for each task except for the first task by a
merging process as defined by IMM. In the IMM merging process, importance
weights are computed for each task using L2 norm followed by a calculation

of a running total of the importance weights of all tasks. Next, the merging

28



PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS

process begins by first merging task 2 and task 1, followed by merging task 3

with task 2 and task 1, then merging task 4 with task 3, task 2 and task 1, and

finally merging task 5 with all previous tasks through a series of operations.
I Importance Weight Calculation

User 1 data, which consists of images that contain 0 and 1 from the

testing SVHN dataset, in addition to images that contain digits 2 through
9, is fed into model M1 in batches of 20 and the outputs are computed.
Once the model outputs are retrieved, a Mean Squared Error (MSE) loss is
computed with the model output and accumulated with each batch of
data. After each batch of data is processed, the optimization process
starts and, in this process, the regularized parameters for each layer in
the model are updated through a series of operations. For example, let’s
say v.0.w is the regularized parameter that represents weights in the first
layer of the model. This parameter has attributes omega, prev_omega, and
init_val which are initialized to 0, some value and data of the parameter
respectively. The omega attribute is multiplied with the previous size of
the data, added with the gradient data of the parameter, and divided by
the current size of the data set in this sequence. The omega value gets
updated for v.0.w. An illustration of this can be found in Fig. 13. This same
process is applied to all the parameters until all the user data has been

processed. At the end, L2 norm is computed by dividing the accumulated
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data with total data and M1 is returned with updated regularized

parameters as seen in Fig. 14.

Optimization Step: Layer O, Batch_Index =0

batch_index =0

batch_size = 20

prev_size = batch_index * batch_size = 0
curr_size = (batch_index + 1) * batch_size = 20

[ v.0.w| {lomega: 0}, prev_omega: value, init_val: data )] [ v.0.w: {Jomega: updated_value}, prev_omega: value, init_val: data } ]

i

parameter (p)

omega = omega.mul(prev_size = 0)
omega = omega.add(p.grad_data)
omega = omega.div(curr_size = 20)

Figure 13: Optimization process of updating regularized parameters

v.0.w: {omega: updated, prev_omega: value, init_val: data } ]

v.0.b: {omega: updated, prev_omega: value, init_val: data } ]

> w
- reg_params v.2.w: {omega: updated, prev_omega: value, init_val: data } ]
v.2.b: {omega: updated, prev_omega: value, init_val: data } ]
v.4.w: {omega: updated, prev_omega: value, init_val: data } ]
Head layer

v.4.b: {omega: updated, prev_omega: value, init_val: data } ]

Figure 14: Model, M1, with updated regularized parameters
This process is repeated for all tasks and corresponding models. It's
important to note that the importance weights are the updated omega
values and importance weights of the head layer are not considered

during the merging process as indicated in Fig. 14. This IW calculation is
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done for each task and an illustration of the importance weights for each

task can be seen in Fig. 15.

0: {“classifier.0.weight”: iw_value, “classifier.0.bias”: iw_value, “classifier.2.weight”: iw_value, “classifier.2.bias”: iw_value}
1: {“classifier.0.weight”: iw_value, “classifier.0.bias”: iw_value, “classifier.2.weight”: iw_value, “classifier.2.bias”: iw_value}

iws 2: {“classifier.0.weight”: iw_value, “classifier.0.bias”: iw_value, “classifier.2.weight”: iw_value, “classifier.2.bias”: iw_value}

3: {“classifier.0.weight”: iw_value, “classifier.0.bias”: iw_value, “classifier.2.weight”: iw_value, “classifier.2.bias”: iw_value}
4: {“classifier.0.weight”: iw_value, “classifier.0.bias”: iw_value, “classifier.2.weight”: iw_value, “classifier.2.bias”: iw_value}

Figure 15: Importance weights of each of the 5 tasks

iL. Running Sum of Importance Weights Calculation

The running sum of importance weights is initialized with the IW
of task 1. Subsequently, after the calculation of the IW of task 2, the
running sum of importance weights is accumulated with the IW of task 2
as shown in Fig. 16. This process continues until all the importance

weights for all tasks are considered, as seen in Fig. 17.

0: { ‘classifier.0.weight”: iw_value, ‘classifier.0.bias”: iw_value {classifier.2.weight”: iw_value| ' classifier.2.bias”: iw_value

Add Add [ Add Add

1: { ‘classifier.0.weight”: iw_value, ‘classifier.0.bias”: iw_value classiﬁerZ welght” iw_value class#ierz bias”: iw_value

- S S_%

[ 0: {“classifier.0.weight”: sum_iw_value, “classifier.0.bias”: sum_iw_value, “classifier.2.weight”: sum_iw_value, “classifier.2.bias”: sum_iw_value} ]

Figure 16: Summation of importance weights of task 1 and task 2
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[ 0: {“classifier.0.weight”: sum_iw_value, “classifier.0.bias”: sum_iw_value, “classifier.2.weight”: sum_iw_value, “classifier.2.bias”: sum_iw_value} ]

[ 1: {“classifier.0.weight”: sum_iw_value, “classifier.0.bias”: sum_iw_value, “classifier.2.weight”: sum_iw_value, “classifier.2.bias”: sum_iw_value} ]

[ 2: {“classifier.0.weight”: sum_iw_value, “classifier.0.bias”: sum_iw_value, “classifier.2.weight”: sum_iw_value, “classifier.2.bias”: sum_iw_value} ]

[ 3: {“classifier.0.weight”: sum_iw_value, “classifier.0.bias”: sum_iw_value, “classifier.2.weight”: sum_iw_value, “classifier.2.bias”: sum_iw_value} ]

Figure 17: Summation of importance weights for all tasks, excluding task 1
Iii. Merging
Recall that task 1 does not have a merged model associated with it
because it’s the first task and there is no previous task for it to merge
with. Initially, a merged model is created for task 2 by merging it with
task 1 through a series of steps.
1. Calculate the weightage (importance) of the parameter values
in each layer of the task 2 model by dividing the IW of task 1
with the running sum value that is averaged over task 1 and 2.
2. Multiply the weightage with the parameter values of the
corresponding layer
3. Create a running sum of product
4. Repeat the process until there are no more tasks to merge
5. Update the parameter value with the mean that is computed by
dividing the running sum with the total number of tasks that

were to be merged
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This same set of steps are followed by merging task 3 with task 2 and task
1, merging task 4 with task 3, task 2, and task 1, and lastly merging task 5
with all previous tasks. At the end of the merging process, there should be
four merged models for all tasks except for the first task.
2) MIT Indoor Scenes Experiments: The MIT Indoor Scenes dataset was used in the
last two experiments. Both these experiments incrementally train a VGG11
(pretrained on ImageNet) model on a series of tasks defined by the MIT Indoor
Scenes dataset. This dataset consists of 5 super categories and each super category
has subcategories associated with it. The 5 super categories are store, home, public
spaces, leisure and working place. Each of these super categories, aside from working
place, is defined as a task. A clear picture of the defined tasks can be found in Table
[II. The MIT Indoor Scenes dataset contains 67 indoor categories and a total of

15620 images. However, in both experiments, only 5360 images were used for

training and only 1,340 images were used for testing.

TABLE III: Tasks of MIT Indoor Scenes
TASKS SUBSET OF INDOOR SCENES
1 home
2 leisure
3 public
4 store

33




PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS

a) User Transform: The first experiment on the MIT Indoor Scenes dataset
considered a total of 10 users and each user is allocated an equal amount of data
from all categories in all tasks from the testing set of images. For example, user 1
has been allocated 635 evaluation samples and 639 importance weight samples
from task 2. User 2 also has the same number of evaluation and importance
weight samples from task 2. In other words, no user has preferences over the
categories and importance weights are calculated across all categories. In
addition to this change, a transform is applied to the training and validation
dataset on the server and a different transform is applied to each user dataset as
an additional privacy measure.
I Server Training of Models for all Tasks
All 4 tasks are trained incrementally on the server using IMM just
like in the numbers experiment. This experiment starts with a VGG11
model that was pretrained on ImageNet. Prior to training task 1, the
classifier layer of the VGG11 model is replaced with 14 new output units
because task 1 contains 14 subcategories. After replacing the head layer,
training begins by feeding the model with data of mini batches of size 30,
computing loss using the cross-entropy loss function and using Stochastic
Gradient Descent (SGD) as the optimizer to compute the gradient of the
loss with respect to all trainable parameters. Both the training phase and

validation phase is carried off in each epoch. There are a total of 49
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epochs defined, however, it doesn’t run through all the epochs if a best
model has already been found. At the end of the validation phase in each
epoch, the model with the highest accuracy gets saved for task 1.

The model that will be used to train task 2 is the model that was
trained on task 1 through weight transfer. Since we want to preserve the
model for task 1, we replace the head layer with 11 new units since there
are 11 subcategories in task 2. After replacing the head layer, the model is
initialized with regularized parameters for each layer by setting a few
attributes, that have not been initialized, to 0. The attributes of the
regularized parameters are w, omega, init_val, name, and lambda. The
definitions of each of these attributes is found in Table II. The training
process of task 2 is like the training process of task 1. Just as in the
numbers experiment, the Weighted Stochastic Gradient Descent (SGD) is
used as the optimizer. At the end of the training and validation phase in
each epoch, accuracy is compared with the best accuracy and the best
accuracy value gets updated to the current accuracy for the next epoch
and the best model gets saved for task 2.

Task 3 is trained like task 2 with a few adjustments. The head
layer is replaced with 14 new units since the outputs of task 3 are 14
subcategories. Recall, regularized parameters were initialized when the

model was being trained on task 2. Now, these regularized parameters
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are updated for the new task. Prior to the update, the regularized
parameters for the head layer are removed. For the existing regularized
parameters, omega is updated to 1 and init_val is updated to the data of
the parameter. Since the regularized parameters of the head layer were
removed, its initialized with omega to 1 and init_val to the data of the
parameter. The regularized parameters of the model now only consist of
three attributes, omega, init_val, and lambda. After updating the
regularized parameters, the rest of the training and validation process is
the same as that of task 2 with Weighted SGD and calculation of average
loss and accuracy to find the best model that was trained on task 3.
Furthermore, task 4 is trained in the same way as task 3. After training is
completed, four models can be found, each one trained on one task.
IL. IMM Merging Process

After the server has completed training for each task, each model
is used to calculate user priors, or importance weights (IW), from the
user dataset, as part of user adaptation. In this experiment, there are ten
users. Recall that each of these 10 users do not have a preference over the
categories in each task. Rather, the user dataset is composed of images
from all tasks, and it’s divided into an evaluation dataset and an
importance weight dataset. As the name indicates the importance weights

are calculated from the importance weight dataset. To illustrate the
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merging process in its entirety, the focus will be on user 1, even though
the same method is applied to the rest of the users.

Once the server has finished training on all tasks, a model can be
found for each task. In this experiment, there were 4 tasks so 4 trained
models can be found. Each of the models is going to be used to calculate
IW from the user dataset, which has been divided into appropriate tasks
beforehand. Prior to calculating the IW and merging models, the
regularized parameters for each layer in all models is removed and re-
initialized with new attributes and values. The attributes are omega,
prev_omega, and init_val which is initialized to 0, previous omega value
and the data of the parameter, respectively. Please refer to the importance
weight section in the numbers experiment to see how importance weights
are calculated.

A merged model is computed for each task except for the first task
by a merging process as defined by IMM. In the IMM merging process,
importance weights are computed for each task using L2 norm followed
by a calculation of a running total of the importance weights of all tasks.
Next, the merging process begins by first merging task 2 and task 1,
followed by merging of task 3 with task 2 and task 1, then merging task 4

with task 3, task 2 and task 1. Please refer to the merging process section
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described in the numbers experiment because the same process is applied

for this experiment.
b) Category Prior: In contrast to the first experiment on the MIT Indoor Scenes
dataset, the second experiment assigns preference of 3 categories to each of the
5 users that this experiment considers. Users are allocated data based on the
categories they prefer from all tasks. For example, user 1 has been allocated 132
evaluation samples and 133 importance weight samples with preferences for
winecellar, dining room and corridor from task 2. User 2 has 131 evaluation
samples and 133 importance weight samples with preferences for dining room,
corridor, and winecellar. Also, unlike the first experiment, there is no transform
applied to the training and validation dataset on the server nor on the user
dataset. The training, merging, and testing processes for this experiment is the

same as the user transform experiment so, please refer to that section for concepts.

VI. PRELIMINARY RESEARCH

A. Analysis of DUA Framework

A few questions arise upon closer inspection of the three experiments that were
executed on the DUA framework. In a real-world setting, there is no guarantee that the
dataset contained in the user device is like the dataset contained in the server.
However, in all three experiments, the same datasets were used for both the server and
user devices. For example, in the numbers experiment, the MNIST and SVHN datasets
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were used for both training on the server and data on user devices. Upon further
observation, in all three experiments, the dataset in the user device is divided into a
series of tasks just as the server. In other words, the number of tasks in the user device
is the same as the number of tasks in the server. In addition to the fact that there is no
guarantee that the user data will be like server data, there is no guarantee that user
data will be divided into a series of tasks since user data is continuously evolving. These
observations suggest that the DUA framework is built upon a series of assumptions. A
question that arises then is that, how is the performance of server trained models and
models delivered to the user on unseen data? Therefore, it's important to investigate
the robustness of these models on unseen data.

1) Implementation Plan to Check Robustness:

a) Numbers Experiment:

In this experiment, as defined in the paper, each merged model was tested on
all task data. For example, the merged model in task 2 was tested on task 1 data
and evaluated by replacing its head layer with that of the model trained on task
1. This testing and evaluation process was done for all merged models. It’s
important to mention that the testing data that was used to evaluate the
performance of all merged models on all tasks was the same as the user dataset
that was initially used to calculate importance weights for the merging process.
Hence, it’s essential to check the robustness of these merged models by

evaluating it on unseen data and we are using .
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1. Pre-process the EMNIST digits dataset by applying a series of
transforms
2. Divide the EMNIST digits dataset into the same 5 tasks as
defined in the server by both MNIST and SVHN datasets
3. Feed the unseen EMNIST digits task data into the server trained
models and evaluate how each model performs on unseen data
4. Repeat the previous step for the merged models for user 1 and
evaluate how each merged model performs on unseen data
5. Replace the head layer of each unmerged model with the head
layer of all models
6. Feed the unseen EMNIST digits data into each corresponding
newly configured model and evaluate how each unmerged model
performs on unseen data
7. Repeat the previous two steps for merged models and evaluate
how each merged model performs on unseen data
b) MIT Indoor Scenes Experiment: There were two experiments that used the
MIT indoor scenes dataset, user transform and category prior. However, the
robustness check will only be performed on the category prior experiment for
the purpose of illustrating how robustness is done.
In this experiment, each merged model was tested on all task data. For

example, the task 2 merged model was tested on task 1 data and evaluated by
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replacing its head layer with that of the model trained on task 1. This testing and
evaluation process was done for all merged models. It's important to mention
that the testing data that was used to evaluate the performance of all merged
models on all tasks was the evaluation dataset that was created from the MIT
indoor scenes dataset. Hence, it’s essential to check the robustness of these
models by evaluating it on unseen data.
1. Gather non-commercial images from all categories in each task
from Google using the google-images-download tool
2. Divide the custom scenes dataset into tasks like the tasks in the
experiment.
3. Feed the unseen scenes task data into the server trained models
and evaluate how each model performs on unseen data
4. Repeat the previous step for the merged models for user 1 and
evaluate how each merged model performs on unseen data
5. Implement and train a centralized model with user data and
compare its performance with that of the DUA framework
6. Implement FedAvg and train the framework using MIT indoor
scenes dataset to compare its performance with that of the DUA
framework

7. Repeat step 6 with FedProx framework
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2) Evaluation Results:

a) Robustness Check of Numbers Experiment:

I Unmerged Models

The first robustness check that was done was to see how well all server
trained models (unmerged models) performed on unseen EMNIST task data.
Recall that there is a model for every task after the server is done training.
Appropriate task data was fed into corresponding task models in batches of 50
and an average accuracy was computed after all the data had been processed.
Fig. 18 displays the confusion matrices for all unmerged models. The first
confusion matrix that is shown in Fig. 18 is that of task 1 unmerged model and it
shows that 3969 samples out of 4000 were correctly classified as 0 and 3931
samples out of 4000 were correctly classified as 1. It also shows that 31 samples
out of 4000 were misclassified as 1 when the expected value was supposed to be
0 and 69 out of 4000 samples were misclassified as 0 when the expected value
was supposed to be 1. All the confusion matrices in Fig. 18 indicate the number

of correct classifications and misclassifications of each task.
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Figure 18: Confusion Matrices for all 5 unmerged models
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Fig. 19 provides the average accuracy values for task models based on the

confusion matrices that were received on the EMNIST dataset. Based on the

results, the average accuracy was high for task 1, 2 and 3 models and somewhat

high for tasks 4 and 5. Perhaps, one reason why the accuracy wasn'’t high for

tasks 4 and 5 when compared with the accuracies for tasks 1, 2 and 3 is due to

the updated regularized parameters as part of the training process. Nonetheless,

the task models do well in predicting the tasks they were trained for on unseen

task data.
Accuracy of Unmerged Models
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Figure 19: Plot of average accuracies for all 5 tasks

iL. Merged Models

The second robustness check was to verify that each merged model

performed correctly on its corresponding task. Each parameter in a merged

model contains the mean parameter value of its previous tasks. For example,
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Expected Values

Expected Values

the weights in the merged model of task 2 is the average of weights in both task

1 model and task 2 model. Like how the first robustness check was done,

appropriate task data was fed into corresponding task merged models in

batches of 50 and an average accuracy was computed after all the data had been

processed. Fig. 20 displays the confusion matrices for all merged models.
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Figure 20: Confusion Matrices for all 4 merged models
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Fig. 21 provides the average accuracy values for all merged models that were

received on the EMNIST dataset.
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Figure 21: Plot of average accuracies for all 4 merged models

Task 1 does not have a merged model. Based on the results in Fig. 21, the
accuracy on the merged model for task 2 is slightly less than the accuracy on the
unmerged model for task 2 because the weights of the merged model are
averaged over two tasks, task 1 and 2. The accuracies for tasks 3, 4 and 5 are
substantially low and this could be because weights are averaged over all
previous tasks. This suggests that some of the information that is learned is lost
when models are merged.

Il Unmerged Models with Classifier Layers of all Models

Compared to the previous two evaluation experiments, the third

robustness check is done differently. In this evaluation study, the classifier layer
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of each model will be replaced with classifier layers of all models. For example,
the classifier layer of task 1 unmerged model is originally composed of 2 nodes
as in Fig. 6. After replacing this layer with classifier layers from all unmerged
models, the classifier layer of task 1 will be composed of 10 nodes. Fig. 22

showcases the architecture of the new model configuration.

Input feature Linear layer Linear layer —
2352 nodes 100 nodes 100 nodes
7—Head layer of Task 1 model
=—Head layer of Task 2 model
=—Head layer of Task 3 model
° ° . )
[ J [ ] [ ]
o [ ] [ ]
) o ) =—Head layer of Task 4 model
o [ J [ J
[ J [ ] [ ]
[ ] [ [ J _J
® [ ] [ ] .
\ } ~—Head layer of Task 5 model
Backbone —

Figure 22: Model configuration with classifier layers of all models

The new model configuration in Fig. 22 is applied to all the unmerged models by
replacing the backbone architecture with each unmerged model. For example,
when the backbone architecture is the unmerged model for task 1, the new

model configuration can be seen in Fig. 23.
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Input feature Linear layer Linear layer —
2352 nodes 100 nodes 100 nodes
_Head layer of Task 1 model

L_Head layer of Task 2 model

L_Head layer of Task 3 model

L__Head layer of Task 4 model

) L_Head layer of Task 5 model

|
[

Backbone of Task 1 Model (Unmerged) _J

Figure 23: Task 1 unmerged model as backbone with classifier layers of all models

Fig. 24 and Table IV contain the confusion matrix and performance
metrics for task 1 unmerged model, respectively. Fig. 25 and Table V contain the
confusion matrix and performance metrics for task 2 unmerged model,
respectively. Fig. 26 and Table VI contain the confusion matrix and performance
metrics for task 3 unmerged model, respectively. Fig. 27 and Table VII contain
the confusion matrix and performance metrics for task 4 unmerged model,
respectively. Fig. 28 and Table VIII contain the confusion matrix and

performance metrics for task 5 unmerged model, respectively.
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Figure 24: Confusion Matrix for Task 1 Unmerged Model on entire EMNIST dataset

TABLE IV: Performance Metrics of Task 1 Unmerged Model for EMNIST dataset

accuracy
0.98800
0.97575
0.00100
0.16125
0.00000
0.00025
0.00975
0.00000
0.11100

0.00375

precision

0.186178
0.287514
0.072727
0.220664
0.000000
0.500000
0.195000
0.000000
0.235669

0.111940

recall

0.98800

0.97575

0.00100

0.16125

0.00000

0.00025

0.00975

0.00000

0.11100

0.00375

F1 score

0.313315

0.444154

0.001973

0.186335

0.000000

0.000500

0.018571

0.000000

0.150918

0.007257

TP
3952
3903

4

645

39

444

15

49

FP

17275

9672

51

2278

161

1440

119

TN

18725

26328

35949

33722

36000

35999

35839

36000

34560

35881

FN

48

97
3996
3355
4000
3999
3961
4000
3556

3985

model
unmerged_T1_backbone_all_heads
unmerged_T1_backbone_all_heads
unmerged_T1_backbone_all_heads
unmerged_T1_backbone_all_heads
unmerged_T1_backbone_all_heads
unmerged_T1_backbone_all_heads
unmerged_T1_backbone_all_heads
unmerged_T1_backbone_all_heads
unmerged_T1_backbone_all_heads

unmerged_T1_backbone_all_heads
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category
0

1

Based on the confusion matrix and performance metrics for task 1 unmerged

model, there was a high accuracy for predicting 0 and 1, which is expected since

this model was trained for classifying 0 and 1.

Task 2 Unmerged Model

4
Predicted Values

5

Figure 25: Confusion Matrix for Task 2 Unmerged Model on entire EMNIST dataset

TABLE V: Performance Metrics of Task 2 Unmerged Model for EMNIST dataset

accuracy
0.86650
0.60400
0.76925
0.88000
0.00025
0.00000
0.00125
0.00000
0.01675

0.00275

precision
0.275014
0.312508
0.337798
0.345572
1.000000
0.000000
0.138889
0.000000
0.223333

0.354839

recall
0.86650
0.60400
0.76925
0.88000
0.00025
0.00000
0.00125
0.00000
0.01675

0.00275

F1 score
0.417515
0.411900
0.469448
0.496264
0.000500
0.000000
0.002478
0.000000
0.031163

0.005458

TP
3466
2416
3077
3520

1

67

1

50

FP

9137

5315

6032
6666

31

233

20

TN
26863
30685
29968
29334
36000
35999
35969
35998
35767

35980

FN
534
1584
923
480
3999
4000
3995
4000
3933

3989

model
unmerged_T2_backbone_all_heads
unmerged_T2_backbone_all_heads
unmerged_T2_backbone_all_heads
unmerged_T2_backbone_all_heads
unmerged_T2_backbone_all_heads
unmerged_T2_backbone_all_heads
unmerged_T2_backbone_all_heads
unmerged_T2_backbone_all_heads
unmerged_T2_backbone_all_heads
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Based on the confusion matrix and performance metrics of task 2 unmerged
model, 3077 samples out of 4000 were correctly classified as 2 and 3520
samples out of 4000 were correctly classified as 3. The results also show that
3466 samples out of 4000 were classified as 0 and 2416 were classified as 1.
Even though the accuracy of identifying 0 and 1 was low compared to the
accuracy of identifying 0 and 1 when the backbone was task 1 unmerged model,
this shows that some of the learned features haven’t been forgotten since the

models have been trained sequentially in the DUA framework.

Task 3 Unmerged Model

a 5 6 7
Predicted Values

Figure 26: Confusion Matrix for Task 3 Unmerged Model on entire EMNIST dataset
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TABLE VI: Performance Metrics of Task 3 Unmerged Model for EMNIST dataset

accuracy
0.89175
0.60000
0.76425
0.89050
0.00300
0.00000
0.00225
0.00000
0.01675

0.00325

precision
0.275806
0.328093

0.311177
0.375224
0.600000
0.000000
0.200000
0.000000
0.221854

0.194030

recall
0.89175
0.60000
0.76425
0.89050
0.00300
0.00000
0.00225
0.00000
0.01675

0.00325

F1 score
0.421308
0.424216
0.442274
0.527977
0.005970
0.000000
0.004450
0.000000
0.031148

0.006393

TP
3567
2400
3057
3562
12

0

9

0

67

13

FP
9366
4915
6767

5931l

36

235

54

TN
26634
31085
29233
30069
35992
36000
35964
35999
35765

35946

FN
433
1600
943
438
3988
4000
3991
4000
3933

3987

model
unmerged_T3_backbone_all_heads
unmerged_T3_backbone_all_heads
unmerged_T3_backbone_all_heads
unmerged_T3_backbone_all_heads
unmerged_T3_backbone_all_heads
unmerged_T3_backbone_all_heads
unmerged_T3_backbone_all_heads
unmerged_T3_backbone_all_heads
unmerged_T3_backbone_all_heads

unmerged_T3_backbone_all_heads

Based on the confusion matrix and performance metrics of task 3 unmerged

model, only 12 out of 4000 samples were correctly classified as 4 and no

samples were classified as 5 even though the dataset contained 4000 images that

contained the digit 5. Another observation is that 3567 samples out of 4000 have

been classified as 0 and 3562 samples out of 4000 have been classified as 3. Task

3 model was trained on classifying 4 and 5, however, it performed poorly on

classifying 4 and 5 correctly compared to its classification of 0 and 3. This

indicates that the output scores for classes 0 and 3 may be higher than the

output scores for 4 and 5 and the model isn’t well calibrated to identify 4 and 5.
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Figure 27: Confusion Matrix for Task 4 Unmerged Model on entire EMNIST dataset

TABLE VII: Performance Metrics of Task 4 Unmerged Model for EMNIST dataset

accuracy
0.87775
0.65400
0.74000
0.87900
0.00275
0.00000
0.00650
0.00000
0.01925

0.00500

precision
0.297744
0.325657
0.283199
0.380355
0.687500
0.000000
0.412698
0.000000

0.261017

0.229885

recall
0.87775
0.65400
0.74000
0.87900
0.00275
0.00000
0.00650
0.00000
0.01925

0.00500

F1 score
0.444656
0.434804
0.409632
0.530957
0.005478
0.000000
0.012798
0.000000
0.035856

0.009787

TP
3511
2616
2960
3516
1

0

26

0

77

20

FP
8281
5417
7492

5728

37
17
218

67

TN

27719

30583

28508

30272

35995

35999

35963

35983

35782

35933

FN
489
1384
1040
484
3989
4000
3974
4000
3923

3980

model
unmerged_T4_backbone_all_heads
unmerged_T4_backbone_all_heads
unmerged_T4_backbone_all_heads
unmerged_T4_backbone_all_heads
unmerged_T4_backbone_all_heads
unmerged_T4_backbone_all_heads
unmerged_T4_backbone_all_heads
unmerged_T4_backbone_all_heads
unmerged_T4_backbone_all_heads

unmerged_T4_backbone_all_heads

Based on the confusion matrix and performance metrics of task 4 unmerged

model, only 26 out of 4000 samples were correctly classified as 6 and no
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samples were classified as 7 even though the dataset contained 4000 images that
contained the digit 7. Just as the observation made with task 3 unmerged model,
3511 samples out of 4000 have been classified as 0 and 3516 samples out of
4000 have been classified as 3. Task 4 model was trained on classifying 6 and 7,
however, it performed poorly on classifying 6 and 7 correctly compared to its
classification of 0 and 3. This indicates that the output scores for classes 0 and 3
may be higher than the output scores for 4 and 5 and model isn’t well calibrated

to identify 6 and 7.

Task 5 Unmerged Model

1 2 3 4 5 6 7
Predicted Values

Figure 28: Confusion Matrix for Task 5 Unmerged Model on entire EMNIST dataset
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TABLE VIII: Performance Metrics of Task 5 Unmerged Model for EMNIST dataset

accuracy precision recall F1score TP FP TN FN model
0.85025 0.317880 0.85025 0.462753 3401 7298 28702 599 unmerged_T5_backbone_all_heads
0.81450 0.334120 0.81450 0.473856 3258 6493 29507 742 unmerged_T5_backbone_all_heads
0.64575 0.289379 0.64575 0.399660 2583 6343 29657 1417 unmerged_T5_backbone_all_heads
0.88975 0.359713 0.88975 0.512308 3559 6335 29665 441 unmerged_T5_backbone_all_heads
0.00100 0.666667 0.00100 0.001997 4 2 35998 3996 unmerged_T5_backbone_all_heads
0.00000 0.000000 0.00000 0.000000 0 0 36000 4000 unmerged_T5_backbone_all_heads
0.01225 0.532609 0.01225 0.023949 49 43 35957 3951 unmerged_T5_backbone_all_heads
0.00000 0.000000 0.00000 0.000000 0 6 35994 4000 unmerged_T5_backbone_all_heads
0.01850 0.164811 0.01850 0.033266 74 375 35625 3926 unmerged_T5_backbone_all_heads

0.00700 0.158192 0.00700 0.013407 28 149 35851 3972 unmerged_T5_backbone_all_heads

Based on the confusion matrix and performance metrics of task 5 unmerged
model, only 74 out of 4000 samples were correctly classified as 8 and 28
samples out of 4000 were classified as 9. Just as the previous observations, there
is high accuracy for the classification of 0 and 3. Task 5 model was trained on
classifying 8 and 9, however, it performed poorly on classifying 8 and 9 correctly
compared to its classification of 0 and 3. This indicates that the output scores for
classes 0 and 3 may be higher than the output scores for 8 and 9 and the model
isn’t well calibrated to identify 8 and 9. Fig. 29 displays the plot of average
accuracies received for each unmerged model on the entire EMNIST dataset. The
low accuracy values for all unmerged models indicate that the models are not

well calibrated to identifying the data they were trained on.
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Accuracy of Unmerged Models
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Figure 29: Plot of average accuracies for all 5 unmerged models with updated classifier
layers for each model

iv. Merged Models with Classifier Layers of all Models

This is the same as the third robustness check that was done on
unmerged models. Fig. 30 and Table IX contains the confusion matrix and
performance metrics for task 2 merged model, respectively. Fig. 31 and Table X
contains the confusion matrix and performance metrics for task 3 merged
model, respectively. Fig. 32 and Table XI contains the confusion matrix and
performance metrics for task 4 merged model, respectively. Fig. 33 and Table XII
contains the confusion matrix and performance metrics for task 5 merged

model, respectively.
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category
0

1

Task 2 Merged Model

Predicted Values

Figure 30: Confusion Matrix for Task 2 Merged Model on entire EMNIST dataset '
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TABLE IX: Performance Metrics of Task 2 Merged Model for EMNIST dataset

accuracy
0.97025
0.89500
0.54825
0.76725
0.00000
0.00000
0.00075
0.00000
0.03425

0.00325

precision
0.229143
0.356645
0.422055
0.429231
0.000000
0.000000
0.075000
0.000000
0.242049

0.183099

recall
0.97025
0.89500
0.54825
0.76725
0.00000
0.00000
0.00075
0.00000
0.03425

0.00325

F1 score
0.370731
0.510044
0.476947
0.550493
0.000000
0.000000
0.001485
0.000000
0.060009

0.006387

TP
3881
3580
2193
3069

0

137

13

FP

13056

6458

3003

4081

37

429

58

TN
22944
29542
32997
31919
35999
36000
35963
35999
35571

35942

FN
119
420
1807
931
4000
4000
3997
4000
3863

3987

model
merged_T2_backbone_all_heads
merged_T2_backbone_all_heads
merged_T2_backbone_all_heads
merged_T2_backbone_all_heads
merged_T2_backbone_all_heads
merged_T2_backbone_all_heads
merged_T2_backbone_all_heads
merged_T2_backbone_all_heads
merged_T2_backbone_all_heads

merged_T2_backbone_all_heads

The weights of the task 2 merged model are the average of the weights of task 1

and task 2 models. Based on the confusion matrix and performance metrics of
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task 2 merged model, 3881 samples out of 4000 were classified as 0, 3580
samples out of 4000 were classified as 1, 2193 samples out of 4000 were
classified as 2 and 3069 samples out of 4000 were classified as 3. Even though
the accuracy for identifying 0 and 1 is high, there is a low accuracy for
identifying 2 and 3. This indicates that the model hasn’t learned the important

features to identify 2 and 3 well enough to be able to classify them correctly.

Task 3 Merged Model

3 5 6 7
Predicted Values

Figure 31: Confusion Matrix for Task 3 Merged Model on entire EMNIST dataset

1 2 3
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category
0

1

accuracy
0.97000
0.89575
0.55025
0.77075
0.00000
0.00000
0.00075
0.00000
0.03425

0.00325

TABLE X: Performance Metrics of Task 3 Merged Model

precision
0.229749
0.357015
0.422700
0.428552
0.000000
0.000000
0.076923
0.000000
0.242908

0.185714

recall
0.97000
0.89575
0.55025
0.77075
0.00000
0.00000
0.00075
0.00000
0.03425

0.00325

F1 score
0.371505
0.510544
0.478114
0.550831
0.000000
0.000000
0.001486
0.000000
0.060035

0.006388

TP
3880
3583
2201
3083

0

137

13

FP

13008

6453

3006

41

36

427

57

TN
22992
29547
32994
31889
35999
36000
35964
35999
35573

35943

FN
120
417
1799

917
4000
4000
3997
4000
3863

3987

model
merged_T3_backbone_all_heads
merged_T3_backbone_all_heads
merged_T3_backbone_all_heads
merged_T3_backbone_all_heads
merged_T3_backbone_all_heads
merged_T3_backbone_all_heads
merged_T3_backbone_all_heads
merged_T3_backbone_all_heads
merged_T3_backbone_all_heads

merged_T3_backbone_all_heads

The weights of the task 3 merged model are the average of the weights of task 1,

task 2 and task 3 models. Based on the confusion matrix and performance

metrics of task 3 merged model, 3880 samples out of 4000 were classified as 0,

3583 samples out of 4000 were classified as 1, 2201 samples out of 4000 were

classified as 2 and 3083 samples out of 4000 were classified as 3. Task 3 model

has been trained on digits 4 and 5, however, task 3 merged model is unable to

classify digits 4 and 5. This indicates that the model hasn’t learned the

important features to identify 4 and 5 well enough to be able to classify them

correctly.
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category
0

1

Figure 32:

accuracy
0.96975
0.89525
0.55100
0.77300
0.00000
0.00000
0.00075
0.00000
0.03325

0.00350

Task 4 Merged Model

4
Predicted Values

5

Confusion Matrix for Task 4 Merged Model on entire EMNIST dataset

TABLE XI: Performance Metrics of Task 4 Merged Model

precision
0.230235

0.357171
0.420932
0.428433
0.000000
0.000000

0.073171
0.000000
0.237500

0.200000

recall
0.96975
0.89525
0.55100
0.77300
0.00000
0.00000
0.00075
0.00000
0.03325

0.00350

F1 score
0.372122
0.510623
0.477263
0.551306
0.000000
0.000000
0.001485
0.000000
0.058333

0.006880

TP
3879
3581
2204
3092

0

133

14

60

FP
12969
6445
3032
4125
0

0

38

2

427

56

TN
23031
29555
32968
31875
36000
36000
35962
35998
35573

35944

FN
121
419
1796
908
4000
4000
3997
4000
3867

3986

model
merged_T4_backbone_all_heads
merged_T4_backbone_all_heads
merged_T4_backbone_all_heads
merged_T4_backbone_all_heads
merged_T4_backbone_all_heads
merged_T4_backbone_all_heads
merged_T4_backbone_all_heads
merged_T4_backbone_all_heads
merged_T4_backbone_all_heads

merged_T4_backbone_all_heads
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category
0

1

accuracy

0.96950

0.89600

0.55175

0.77700

0.00000

0.00000

0.00100

0.00000

0.03300

0.00450

Task 5 Merged Model

4 5
Predicted Values

Figure 33: Confusion Matrix for Task 5 Merged Model on entire EMNIST dataset

TABLE XII: Performance Metrics of Task 5 Merged Model

precision
0.231219
0.356794
0.421989
0.426982
0.000000
0.000000
0.097561
0.000000
0.239130

0.227848

recall
0.96950
0.89600
0.55175
0.77700
0.00000
0.00000
0.00100
0.00000
0.03300

0.00450

F1 score

0.373387

0.510360

0.478223

0.551113

0.000000

0.000000

0.001980

0.000000

0.057996

0.008826

TP

3878

3584

2207

3108

0

132

18

FP

12894

6461

3023

4171

37

420

61

TN

23106

29539

32977

31829

36000

36000

35963

35998

35580

35939

FN

122

416

1793

892

4000

4000

3996

4000

3868

3982

model
merged_T5_backbone_all_heads
merged_T5_backbone_all_heads
merged_T5_backbone_all_heads
merged_T5_backbone_all_heads
merged_T5_backbone_all_heads
merged_T5_backbone_all_heads
merged_T5_backbone_all_heads
merged_T5_backbone_all_heads
merged_T5_backbone_all_heads

merged_T5_backbone_all_heads

The results of task 4 and task 5 merged models don’t showcase any

further improvement when compared to task 3 merged model results. Fig. 34

displays the plot of average accuracies received for each merged model on the
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entire EMNIST dataset. These low accuracy values are expected since the

unmerged model counterparts also show low accuracy values.

Accuracy of Merged Models
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Figure 34: Plot of average accuracies of all 4 merged models

b) Robustness Check of MIT Indoor Scenes Experiment

The first robustness check that was done was to see how well all
unmerged models performed on unseen task data. Appropriate task data was fed
into corresponding task models in batches of 32 and an average accuracy was
computed after all the data had been processed. The supplementary section of
this report showcases the performance metrics of all unmerged models on
unseen task data. Fig. 35 provides the average accuracy values for unmerged
models that were received on the newly created scenes dataset. Based on the

results, the average accuracy is low for all tasks on unseen data.
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Accuracy of Unmerged Models
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Figure 35: Plot of average accuracies of all 4 unmerged models

The second robustness check was to verify that each merged model
performed correctly on its corresponding task. As a brief recap, each parameter
in a merged model contains the mean parameter value of its previous tasks. Like
how the first robustness check was done, appropriate task data was fed into
corresponding task merged models in batches of 32 and an average accuracy
was computed after all the data had been processed. The supplementary section
of this report showcases the performance metrics of all merged models on
unseen task data Fig. 36 provides the average accuracy values for all merged

models that were received on the new scenes’ dataset for iteration 5.
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Accuracy of Merged Models
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Figure 36: Plot of average accuracies of all 3 merged models

According to Fig. 36, the average accuracy for task 2 merged model is
approximately the same compared to its unmerged counterpart in Fig. 30. The
average accuracies for task 3 and task 4 merged models reduced significantly
compared to its unmerged counterparts. This indicates that information may
have been lost during the merging process to correctly identify the appropriate
class.

Additional experiments were performed to check for robustness. The DUA
framework was not compared with any other federated learning frameworks or
baseline for the MIT indoor scenes experiment. Based on this observation, a
centralized model, FedAvg [7], and FedProx [15] were utilized to create a

baseline for the DUA framework for the MIT indoor scenes experiment.
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The MIT indoor scenes dataset was used in three different data distributions,
homogeneous, heterogeneous, and random. In homogeneous data distribution,
each user is assigned the same number of images depending upon the total
number of images and number of users. For example, if there are 10 images and
5 users, each user gets assigned 2 images. In heterogeneous data distribution,
each user will get the same fraction of images from all categories. For example,
user 1 is allocated 30% of images from store, home, public and leisure super
categories from the MIT indoor scene dataset. In random data distribution, a
user can get a random number of images from a random category and this data
distribution closely resembles a real-world setting. In all three data
distributions, each user has unique images. All three data distributions were
utilized both in FedAvg [7] and FedProx [15] frameworks.

To implement federated learning environments for indoor scenes
predictions, the FedAvg and FedProx implementations from the FedMA GitHub
repo [18] was used with minor modifications. The MIT indoor scenes dataset
was partitioned between 5 users using all three data distribution methods.
Compared to the DUA framework, the implementations of FedAvg [7] and
FedProx [15] included the working place category in the MIT indoor scenes
dataset.

I Homogeneous Data Distribution: Each user received 20% of images

from each category in the MIT indoor scenes dataset.
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iL. Heterogeneous Data Distribution: Even though each user is
allocated images from all categories, the proportion of images that
each user receives from all categories is different. For example,
user 1 receives 20% of images from all categories, user 2 receives
30% of images from all categories, user 3 receives 10% of images
from all categories, user 4 receives 15% of images from all
categories, and lastly, user 5 receives 25% of images from all
categories.

IiL. Random Data Distribution: Each user receives a random number of
images from any category in the MIT indoor scenes dataset.

The same VGG11 architecture that was used in the DUA framework [13] for the
indoor scenes experiments was used to build the model. Each user model was
initialized with this VGG11 model with a few frozen layers. Layers till the
penultimate convolutional layer (‘features 16’) were frozen to preserve the low-
level features learned from ImageNet. Each user model was trained on local data.
The minibatch training involved 25 epochs while taking advantage of data
augmentation due to the comparatively limited training dataset size. PyTorch
implementations of cross entropy loss function and SGD were used for training.

Once the local training phase was completed, the FedAvg [7] and FedProx

[15] were implemented using the user models. A notable change from the

original implementation of these frameworks is that at each communication
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round, instead of selecting a fraction of users at random for local training, all 5
users in this implementation participated in every communication round.

Fig. 37 showcases a plot comparing the average accuracies of all
federated learning frameworks on the MIT indoor scene dataset. Based on the
results shown in Fig. 37, FedProx [15] and FedAvg [7] with homogeneous data
distribution showed the highest accuracy among all the federated learning
frameworks, including DUA. Data distribution and user personalization
differentiate DUA from the rest of the frameworks which is why it’s a

comparable candidate with the rest of the frameworks.

Comparing FL Frameworks for Indoor Scene Identification
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Figure 37: Plot of average accuracies for Federated Learning (FL) frameworks for
Indoor Scene Recognition
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VIIL. METHODOLOGY

Based on the results of the preliminary research that have been shown in the
previous section, the DUA framework doesn’t appear to work well or consider new
unseen tasks. In a real-world setting, user data is constantly evolving. In other words,
there is no way to predict the data that a user device will contain, and it will be a
violation of the user's privacy to know beforehand what the user data might be. For this
purpose, it's important that the DUA framework considers unseen tasks so it can be
adaptable to new data. With that being said, the goal of the proposed methodology is to
address the issue of performance on unseen tasks by the DUA and improve its
performance. There will be two phases in this research. Phase 1 will be focused on
creating new tasks with overlapped datasets. In the original DUA experiment, the server
trained models were trained on unique subsets of the entire dataset. No two models
shared the same subset of training data. In our experiment, we decided to let two
models share the same subset of data because the culmination of the features learned
by each model can help to better identify tasks. After a set of new unmerged and
merged models have been created, these models will be evaluated on unseen EMNIST
data. In theory, the last merged model is trained for all previous tasks and current task.
With that being said, the classifier layer of the last merged model will be replaced with
the classifier layer of all the models on the assumption that the classifier layer of each
model is trained well to identify the task it was trained on. If the last merged model is

trained for all tasks and each classifier layer can identify the task it was trained on, any
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data that is fed into this model configuration should predict tasks correctly. Phase 2 will
be focused on reconstructing the last merged model into multiple configurations and
retraining the new configured models to determine which model improved
performance. As the preliminary research has shown, the findings on the number
datasets experiments generalizes to the MIT indoor scenes dataset. Hence, the rest of

this thesis will focus on the numbers experiment.
A. Implementation Plan for Numbers Experiment
1) Phase 1
1. Create tasks with overlapped datasets using MNIST and SVHN datasets as
shown in Table XIII for both training on the server and collecting importance
weights from user devices.

TABLE XIII: Tasks of Overlapped Datasets
TASKS SUBSET OF DIGITS
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2. Train each of the 10 tasks using the DUA framework resulting in 10

unmerged models.
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3. Calculate the importance weights from the user data using the DUA
framework

4. Merge each task model, except for the first one, resulting in a total of 9
merged models.

5. Pre-process the EMNIST digits dataset by applying a series of transforms.

6. Divide the EMNIST digits dataset into the same 10 tasks as defined in Table
XIII.

7. Feed the unseen EMNIST digits task data into the server trained models and
evaluate how each unmerged model performs on unseen data.

8. Repeat the previous step for the merged models for user 1 and evaluate how
each merged model performs on unseen data.

9. Replace the head layer of each merged model with the head layer of all
models.

10. Feed the unseen EMNIST digits data into each corresponding newly
configured model and evaluate how each merged model performs on unseen
data.

2) Phase 2
1. Create a new configuration (Configuration 1) for the merged model of task

10 by replacing its classifier layer with classifier layers of all the models as

shown in Fig. 38.
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Input feature

2352 nodes

a. Note that the classifier layer of the newly configured task 10

merged model will contain 20 output nodes.

Each digit in the range 0 to 9 contains 2 output nodes in the classifier layer.

The average value of the 2 output nodes will be taken for each digit. There

should be 10 output probabilities at the end. The maximum among these 10

output probabilities will be the prediction of the model. See Fig. 38.
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Head Layer of T10 Merged Model

Figure 38: Model Configuration 1
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3.
task 10 merged model

Input feature Linear layer Linear layer
2352 nodes 100 nodes 100 nodes
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Figure 39: Training head layer only of model configuration 1
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Configuration 2 is the same as configuration with only one difference. The

maximum value of 2 output nodes will be taken for each digit. The maximum

among the 10 output probabilities will be the prediction of the model. See

Fig. 40.
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Figure 40: Model Configuration 2

5. Train only the head layer of Configuration 2 by freezing the parameters of

task 10 merged model
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Figure 41: Training head layer only of model configuration 2
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Configuration 3 for the merged model of task 10 is like Configuration 2 with

one difference. Instead of taking the maximum value among two output

nodes, Configuration 3 takes the sum of each class which results in 10 sum

values. The maximum value among these 10 values is taken as the

prediction. Configuration 3 is shown in Fig. 42.
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Figure 42: Model Configuration 3
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7. Train only the head layer of Configuration 3 by freezing the parameters of

task 10 merged model
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Figure 43: Training head layer only of model configuration 3
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8. Create a new configuration (Configuration 4) for the merged model of task

10 by replacing its classifier layer with a new linear layer of 10 nodes as

shown in Fig. 44.
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Figure 44: Model configuration 4

9. Train the final layer of Configuration 4 by freezing the parameters of the

task 10 merged model
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Figure 45: Training linear layer only of model configuration 4

10. Create a new configuration (Configuration 5) for the merged model of task
10 by replacing its classifier layer with the classifier layer of all models and

inserting a new linear layer of 10 nodes as shown in Fig. 46.
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Figure 46: Model configuration 5

11. Train the final layer of Configuration 5 by freezing the parameters of the

task 10 merged model and the head layer
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Figure 47: Training final layer only of model configuration 5

12. Train the final layer and head layer of Configuration 5 by freezing the

parameters of the task 10 merged model (Configuration 6)
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Figure 48: Training head and final layers only of model configuration 6

VIII. EXPERIMENTAL EVALUATION
A. Evaluation Results of Numbers Experiment
1) Phase 1: The training procedure of these overlapped tasks is the same as the
training done on non-overlapped tasks. At the end of the execution of the DUA
framework on overlapped datasets, there are 10 unmerged and 9 merged models.
It's important to evaluate how these models work on unseen data prior to the rest of
the experiment. The robustness of all these models will be evaluated in a similar

way that was done on models trained on non-overlapped datasets. Fig. 49
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showcases the confusion matrices for all 10 unmerged models followed by Fig, 50

which contains the average accuracies of all models.
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Figure 49: Confusion matrices of all 10 unmerged models
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Accuracy of Unmerged Models
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Figure 50: Plot of average accuracies of 10 unmerged models

Based on the results shown in Fig. 49 and Fig. 50, unmerged models of
task 1, task 2, task 3, task 4, and task 5 have a high accuracy of predicting the
subset of digits it was trained on by testing it on corresponding unseen EMNIST
dataset. A few key observations:

e 3969 samples were correctly classified as 0 by task 1 unmerged
model whereas only 99 samples were correct classified as 0 by
task 10 unmerged model

o Indicates that task 10 unmerged model hasn’t learned the
general structure of identifying a digitas 0 or 9

e 1148 samples were correctly classified as 6 by task 6 unmerged

model whereas 2589 samples were classified as 6 by task 7

unmerged model
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o Indicates that task 6 unmerged model hasn’t learned the
general structure of identifying a digitas 5 or 6
o Also, indicates that task 7 unmerged model has learned a
better general structure of identifying a digit as 6 when
model was trained on 6 and 7
e 2541 samples were correctly classified as 7 by task 7 unmerged
model whereas only 775 samples were classified as 7 by task 8
unmerged model
o Indicates that task 8 unmerged model hasn’t learned the
general structure of identifying a digitas 7 or 8
The same robustness check that was performed for unmerged models
was also performed for merged models. Fig. 51 showcases the confusion
matrices for all 9 merged models followed by Fig. 52 which contains the average

accuracies of all models.
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Figure 51: Confusion matrices of all 9 merged models
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Accuracy of Merged Models
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Figure 52: Average accuracies of all 9 merged models

As the last robustness check, the classifier layer of each merged model
will be replaced with the classifier layers of all merged models as shown in Fig.
53. Unlike in the non-overlapped experiment, placing classifier layers of all
merged models in overlapped experiment will yield 20 output nodes instead of
10. The question that arises then is how to classify digits 0 to 97 Recall that this
experiment is implemented with an overlapped dataset. In other words, two
output nodes are trained to classify the same number as in Fig. 53. To classify a
digit between 0 and 9, the average value of the two output nodes that are trained
to classify the same number are taken. After all average values are computed,

these 10 values are fed through a SoftMax function to compare the probabilities
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The confusion matrix and performance metrics of task 2 merged model

shown in Fig. 54(a) and Fig. 54(b), respectively. The confusion matrix and

performance metrics of task 3 merged model shown in Fig. 55(a) and Fig. 55(b),

respectively.
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Figure 54: (a) Confusion Matrix and (b) Performance Metrics for Task 2 Merged Model
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Based on the results shown in the confusion matrix and performance
metrics of task 2 merged model, the model had high accuracies for predicting
classes 0, 1 and 2. Among these three classifications, class 1 had the highest
accuracy. The accuracy values for the rest of the classes were substantially low.
This is expected behavior since the merged model of task 2 only contains the
weighted average of both task 1 and task 2. The overall accuracy on all data is

0.2849.
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Performance Metrics of Task 3 Merged Model
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Figure 55: (a) Confusion Matrix and (b) Performance Metrics for Task 3 Merged Model

The results for task 3 merged model are very similar to the results for
task 2 merged model. For instance, this merged model also had high accuracies
for predicting classes 0, 1 and 2. Among these three classifications, class 1 had
the highest accuracy. There was a slight improvement in accuracy for identifying
class 2 correctly. The accuracy values for the rest of the classes were

substantially low. The slight improvement in identifying class 2 correctly could
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be because task 3 merged model contains weighted average of task 1, task 2, and
task 3. The overall accuracy on all data is 0.2853.

The confusion matrices and performance of the rest of the merged
models can be found in the supplementary section. After examining the results of
each merged model closely, the overall accuracy on all data stays close to the
same value.

2) Phase 2

The task 10 merged model was used as the backbone of all the new model
configurations.

a) Model Configuration 1: The parameters of the backbone architecture were
kept frozen and only the head layer was trained. At the end of the execution,
a model with the best validation accuracy of 0.6254 was received. Fig. 56
displays the confusion matrix and performance metrics of testing this model

on EMNIST dataset. The overall accuracy is 0.5860.
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Performance Metrics of Task 4 Merged Model
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Figure 56: (a) Confusion Matrix and (b) Performance Metrics for Model Configuration 1
on entire EMNIST dataset

b) Model Configuration 2: The parameters of the backbone architecture were
kept frozen and only the head layer was training. At the end of the execution,
a model with the best validation accuracy of 0.6471 was received. Fig. 57
displays the confusion matrix and performance metrics of testing this model

on EMNIST dataset. The overall accuracy on all data is 0.5891.



PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS

Expected Values

Metric

Overlapping Task - 10 : Retrained Merged Model (CONFIGURATION 2)

4
Predicted Values

(a)

Performance Metrics for Model Configuration 2

0.75 -
0.50 -
0.25 -
0.75 -
0.50
0.25 -
[ ] ] (]
0.75 - °
'Y ]
0.50 5 ®
L J
0.25 °
[ ]
0.75 -
0.50
0.25 -

Ground Truth Label

(b)

Figure 57: (a) Confusion Matrix and (b) Performance Metrics for Model Configuration 2

on entire EMNIST dataset
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c¢) Model Configuration 3: This configuration was trained in the same manner as
Configuration 1. At the end of the execution, a model with the best validation
accuracy of 0.6247 was received. Fig. 58 displays the confusion matrix and
performance metrics of testing this model on EMNIST dataset. The overall

accuracy on all data is 0.5878.
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Performance Metrics for Model Configuration 3
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Figure 58: (a) Confusion Matrix and (b) Performance Metrics for Model Configuration 3
on entire EMNIST dataset

d) Model Configuration 4: After training the final layer while keeping the
parameters of the backbone frozen, a model with the best validation accuracy
of 0.6243 was retrieved. Fig. 59 displays the confusion matrix and
performance metrics of testing this model on EMNIST dataset. The overall

accuracy on all data is 0.5862.
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Figure 59: (a) Confusion Matrix and (b) Performance Metrics for Model Configuration 4
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trained on head layer only on entire EMNIST dataset
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e) Model Configuration 5: This configuration was trained in two different ways
to see which training method would produce a good result.

i. In the first training method, the final layer was the only one that

was trained while keeping the parameters of the backbone frozen.

This resulted in a model with the best validation accuracy of
0.4846. Fig. 60 displays the confusion matrix and performance
metrics of testing this model on EMNIST dataset. The overall

accuracy on all data is 0.4592.
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Performance Metrics for Model Configuration 5
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Figure 60: (a) Confusion Matrix and (b) Performance Metrics for Model Configuration 5
trained on head layer only on entire EMNIST dataset

ii. In the second training method, the head layer and final layer were
the only two layers that were trained while keeping the
parameters of the backbone frozen. This result in a model with the

best validation accuracy of 0.6234. Fig. 61 displays the confusion

matrix and performance metrics of testing this model on EMNIST

dataset. The overall accuracy on all data is 0.5891.
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Overlapping Task - 10 : Retrained Merged Model (CONFIGURATION 6, TRAIN HEAD + CLASSIFIERS)
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Figure 61: (a) Confusion Matrix and (b) Performance Metrics for Model Configuration 6 trained on head layer

only on entire EMNIST dataset
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Based on the results received after training all 6 model configurations and

testing each one on the entire EMNIST dataset, the accuracy provided by each model

was very close to each other. Table XXIII showcases the results of the merged model

of task 5, prior to training, on unseen task data. Table XXIV showcases the results of

the merged model of task 5, whose last layer was retrained, on unseen data. Table

XXV displays the percent change of performance metrics between non-retrained and

retrained versions of task 5 merged model on unseen data. In this example, unseen

task data was defined as {3,7} and it’s taken from the QMNIST dataset.

TABLE XXIII: Performance Metrics for Merged Model of Task 5 - Non- Retrained

Category | Accuracy | Precision | Recall | F1 Score | TP FP | TN FN
3 0.7408 0.92109 | 0.740 | 0.821191 | 3759 | 322 |4881 | 1315
7 0 1.0 0 0 1 0 5074 | 5202

TABLE XXIV: Performance Metrics for Merged Model of Task 5 - Retrained

Category | Accuracy | Precision | Recall | F1 Score | TP FP TN FN
3 0.8638 0.9941 0.8638 | 0.924391 | 4383 | 26 5177 | 691
7 0.8647 0.9980 0.8647 | 0.926578 | 4499 |9 5065 | 704
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TABLE XXV: % Change in Performance Metrics between Non-retrained and Retrained
(Task 5 Merged Model)

Category % Changein | % Changein | % Changein | % Change in
Accuracy Precision Recall F1 Score

3 16.6002 7.9259 16.6002 12.5672

7 inf -0.1996 inf inf

Table XXVI through Table XXVIII provide the change in performance metrics

upon retraining for categories 3 and 7 for all 6 model configurations. In a real-world

setting, user data cannot be predefined into a series of tasks so if the classifier layer of

the final task model is retrained with all data categories, then the accuracy of

identifying unseen data can be improved.

TABLE XXVI: Change in Performance Metrics Upon Retraining - Model Configuration 1

Category % Change in | % Change in | % Changein | % Change in
Accuracy Precision Recall F1 Score

3 40319.9987 298.6193 40319.9987 22540.5114

4 623.0768 33.81330 623.0768 339.2676

TABLE XXVII: Change in Performance Metrics Upon Retraining - Model Configuration 2

Category % Change in | % Changein | % Changein | % Change in
Accuracy Precision Recall F1 Score

3 67383.3324 1328.3944 67383.3324 38010.3157

4 1658.5903 44.0309 1658.5903 878.8898
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TABLE XXVIII: Change in Performance Metrics Upon Retraining - Model Configuration 3

Category % Change in | % Change in | % Changein | % Change in
Accuracy Precision Recall F1 Score

3 40519.9983 298.9197 40519.9983 22610.2538

4 620.32967 34.1471 620.32967 338.9265

Similar to the previous experiment, we took another set of unseen data which we

defined as {4, 7, 9} and evaluated how each model configuration worked against the

merged model from the original experiment. Table XXIX showcases the results of the

merged model of task 5, prior to training, on unseen task data. Table XXX showcases the

results of the merged model of task 5, whose last layer was retrained, on unseen task

data. Table XXXI displays the percent change of performance metrics between non-

retrained and retrained versions of task 5 merged model on this unseen data.

TABLE XXIX: Performance Metrics for Merged Model of Task 5 - Non- Retrained

Category | Accuracy | Precision | Recall | F1 Score | TP FP | TN FN

4 0 0 0 0 0 1 10028 | 4798
7 0.000192 | 1.0 0 0.000384 |1 0 ]9624 |5202
9 0.003937 | 0.3333 0.003 |0.007782 |19 38 | 9963 | 4807
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TABLE XXX: Performance Metrics for Merged Model of Task 5 - Non- Retrained

Category | Accuracy | Precision | Recall | F1 Score | TP FP | TN FN

4 0.81679 | 0.8678 0.817 | 0.8415 3919 | 597 | 14742 | 879
7 0.8647 0.9394 0.865 | 0.9005 4499 | 290 | 9334 | 704
9 0.789266 | 0.8440 0.789 | 0.8157 3809 | 704 | 9297 | 1017

TABLE XXXI: % Change in Performance Metrics between Non-retrained and Retrained

(Task 5 Merged Model)
Category % Changein | % Changein | % Changein | % Change in
Accuracy Precision Recall F1 Score
4 Inf Inf Inf Inf
7 449800 -6.0555 449800 234215.4230
9 19947.3683 153.201 19947.3683 10381.9900

Table XXXII through Table XXXIV provide the change in performance metrics

upon retraining for categories 4, 7 and 9 for all 6 model configurations.

TABLE XXXII: Change in Performance Metrics Upon Retraining - Model Configuration 1

Category % Change in | % Change in | % Changein | % Change in
Accuracy Precision Recall F1 Score

4 623.0768 33.81330 623.0768 339.2676

7 Inf Inf Inf Inf

9 Inf Inf Inf Inf
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TABLE XXXIII: Change in Performance Metrics Upon Retraining - Model Configuration 2

Category % Change in | % Changein | % Changein | % Change in
Accuracy Precision Recall F1 Score

4 1658.5903 44.0309 1658.5903 878.8898

7 Inf Inf Inf Inf

9 Inf Inf Inf Inf

TABLE XXXIV: Change in Performance Metrics Upon Retraining - Model Configuration 3

Category % Change in | % Change in | % Changein | % Change in
Accuracy Precision Recall F1 Score

4 620.32967 34.1471 620.32967 338.9265

7 Inf Inf Inf Inf

9 Inf Inf Inf Inf

IX. CONCLUSION AND FUTURE WORK

This research project focused on the overarching idea of privacy-preserving

visual recognition by closely examining federated learning frameworks, particularly the

DUA framework. One of the challenges of this research project was understanding the

DUA framework itself due to the different components it encompassed. Running a

thorough investigation of the DUA framework, as part of the preliminary research, led

to the discovery of a few pitfalls of the DUA framework. The primary pitfall that was

found was this framework doesn’t work on unseen data. As a brief recap, unseen data is

defined as data that is on the user device that has not been used to train models on the

server. Our research focused on addressing this primary pitfall by implementing an

experiment that involved using overlapped datasets and developing multiple model
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configurations and training them to determine which one performed the best on unseen
data.

Based on our research, we found that nearly all 6 newly defined model
configurations produced similar accuracy values on the entire EMNIST dataset, which
we used as unseen data. Nonetheless, model configuration 2 provided the best results
among all the model configurations because taking the maximum value of each
category, or class, ensures that equal importance is given to all classes. For example,
even though the accuracy value of model configuration was very close to that of model
configuration 2, taking the average value of each class could sway the results especially
if there is a large difference between the two values of each class.

A direct comparison of the original Numbers experiment and the experiment that
we implemented suggests that we have produced a large overhead since the original
experiments consisted of 5 models and our experiment produced 10 models. However,
we have improved the accuracy by 1% on unseen data. In addition, we have also shown
that we can improve the performance of unseen data by retraining the classifier layer of
the final task merged model on all data categories.

This research is a stepping towards adapting DUA to other computer vision tasks.
The future work of this research involves building DUA for other classification tasks

such as human action recognition and object detection.
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SUPPLEMENTARY
The tables below showcase the performance metrics of the unmerged and
merged models of the MIT Indoor Scenes experiment as part of the robustness check
that was done using a custom scenes dataset. The process of how the evaluation was
performed can be found in Section X. The accuracy values for each task evaluation were
0.5255, 0.5092, 0.5824 and 0.5303 for all unmerged models, respectively. The accuracy

values for each task evaluation for all merged models was 0.5053, 0.4915 and 0.4797,

respectively.
TABLE SI: Performance Metrics for Task 1 Unmerged Model

category accuracy precision recall Flscore TP FP TN FN model

0 bathroom 0.695652 0.659794 0.695652 0.677249 64 33 1150 28 unmerged_T1
1 bedroom 0.318681 0.604167 0.318681 0.417266 29 19 1165 62 unmerged_T1
2 children_room 0.241758 0.305556 0.241758 0.269939 22 50 1134 69 unmerged_T1
3 closet 0.517647 0.771930 0.517647 0.619718 44 13 1177 41 unmerged_T1
4 corridor 0.652174 0.666667 0.652174 0.659341 60 30 1153 32 unmerged_T1
5 dining_room 0.473118 0.771930 0.473118 0.586667 44 13 1169 49 unmerged_T1
6 garage 0.404255 0.422222 0.404255 0.413043 38 52 1129 56 unmerged_T1
7 kitchen 0.777778 0.496454 0.777778 0.606061 70 71 1114 20 unmerged_T1
8 livingroom 0.634409 0.373418 0.634409 0.470120 59 99 1083 34 unmerged_T1
9 lobby 0.611111  0.323529 0.611111 0.423077 55 115 1070 35 unmerged_T1
10 nursery 0.073684 0.304348 0.073684 0.118644 7 16 1164 88 unmerged_T1
1" pantry 0.366667 0.825000 0.366667 0.507692 33 7 1178 57 unmerged_T1
12 stairscase  0.879121 0.601504 0.879121 0.714286 80 53 1131 11 unmerged_T1
13 winecellar 0.738636 0.656566 0.738636 0.695187 65 34 1153 23 unmerged_T1
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TABLE S2: Performance Metrics for Task 2 Unmerged Model

category accuracy precision recall Flscore TP FP TN FN model
0 bar 0.410526 0.481481 0.410526 0.443182 39 42 892 56 unmerged_T2

1 bowling 0.711340 0.492857 0.711340 0.582278 69 71 861 28 unmerged_T2

N

buffet 0.287234 0.729730 0.287234 0.412214 27 10 925 67 unmerged_T2

casino 0.404494 0.493151 0.404494 0.444444 36 37 903 53 unmerged_T2

concert_hall 0.872340 0.458101 0.872340 0.600733 82 97 838 12 unmerged_T2
fastfood_restaurant 0.677419 0.440559 0.677419 0.533898 63 80 856 30 unmerged_T2
gameroom 0.318681 0.537037 0.318681 0.400000 29 25 913 62 unmerged_T2

gym 0.557895 0.768116 0.557895 0.646342 53 16 918 42 unmerged_T2

hairsalon 0.461538 0.583333 0.461538 0.515337 42 30 908 49 unmerged_T2

© 0O N O 00 b W

movietheater 0.583333 0.565657 0.583333 0.574359 56 43 890 40 unmerged_T2

10 restaurant 0.297872 0.341463 0.297872 0.318182 28 54 881 66 unmerged_T2

TABLE S3: Performance Metrics for Task 3 Unmerged Model

category accuracy precision recall Fl1score TP FP TN FN model

0 airport_inside 0.597826 0.384615 0.597826 0.468085 55 88 1118 37 unmerged_T3
1 church_inside 0.858696 0.593985 0.858696 0.702222 79 54 1152 13 wunmerged_T3
cloister 0.755556 0.772727 0.755556 0.764045 68 20 1188 22 wunmerged_T3
elevator 0.351064 0.458333 0.351064 0.397590 33 39 1165 61 unmerged_T3
inside_bus 0.705263 0.761364 0.705263 0.732240 67 21 1182 28 unmerged_T3
inside_subway 0.666667 0.646465 0.666667 0.656410 64 35 1167 32 unmerged_T3
library 0.649485 0.840000 0.649485 0.732558 63 12 1189 34 unmerged_T3
locker_room 0.445652 0.518987 0.445652 0.479532 41 38 1168 51 unmerged_T3

museum 0.393617 0.462500 0.393617 0.425287 37 43 1161 57 unmerged_T3

© 0 N O o0 B~ W N

poolinside 0.685393 0.734940 0.685393 0.709302 61 22 1187 28 unmerged_T3
10 prisoncell 0.510870 0.652778 0.510870 0.573171 47 25 1181 45 unmerged_T3
" subway 0.478723 0.432692 0.478723 0.454545 45 59 1145 49 unmerged_T3
12 trainstation 0.439560 0.421053 0.439560 0.430108 40 55 1152 51 unmerged_T3

13 waitingroom 0.622222 0.643678 0.622222 0.632768 56 31 1177 34 unmerged_T3
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TABLE S4: Performance Metrics for Task 4 Unmerged Model

category
bakery
bookstore
clothingstore
deli

florist
grocerystore
jewelleryshop
laundromat
mall
shoeshop
toystore

videostore

accuracy
0.393617
0.474227
0.626374
0.136842
0.755814
0.627660
0.437500
0.839080
0.836957
0.595745
0.531250

0.129412

precision
0.513889
0.707692
0.542857
0.254902
0.915493
0.508621
0.287671
0.901235
0.531034
0.565657
0.472222

0.229167

recall
0.393617
0.474227
0.626374
0.136842
0.755814
0.627660
0.437500
0.839080
0.836957
0.595745
0.531250

0.129412

F1score
0.445783
0.567901
0.581633
0.178082
0.828025
0.561905
0.347107
0.869048
0.649789
0.580311
0.500000

0.165414

TP
37
46
57
13
65
59
42
73
77
56
51

1

FP
35
19
48
38

6
57

104

68
43
57

37

TN
978
991
968
974

1015
956
907

1012
947
970
954
985

FN
57
51
34
82
21
35
54
14
15
38
45

74

model
unmerged_T4
unmerged_T4
unmerged_T4
unmerged_T4
unmerged_T4
unmerged_T4
unmerged_T4
unmerged_T4
unmerged_T4
unmerged_T4
unmerged_T4

unmerged_T4

TABLE S5: Performance Metrics for Task 2 Merged Model

category accuracy

precision

recall

F1 score

bar
bowling
buffet
casino

concert_hall

fastfood_restaurant

gameroom
gym
hairsalon
movietheater

restaurant

0.305263
0.711340
0.287234
0.460674
0.829787

0.731183
0.296703
0.547368
0.428571
0.614583

0.329787

0.439394
0.526718
0.729730
0.445652
0.493671
0.412121
0.562500
0.800000
0.582090
0.526786

0.352273

0.305263
0.711340
0.287234
0.460674
0.829787

0.731183
0.296703
0.547368
0.428571
0.614583

0.329787

115

0.360248
0.605263

0.412214
0.453039
0.619048
0.527132
0.388489
0.650000
0.493671
0.567308

0.340659

TP
29
69
27
M
78
68
27
52
39
59

31

FP

TN FN

model

37

62

10

51

80

97

21

13

28

53

57

897
870
925
889
855
839
917
921
910
880

878

66

28

67

48

16

25

64

43

52

37

63

merged_T2
merged_T2
merged_T2
merged_T2
merged_T2
merged_T2
merged_T2
merged_T2
merged_T2
merged_T2

merged_T2
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TABLE S6: Performance Metrics for Task 3 Merged Model

category
airport_inside
church_inside
cloister
elevator
inside_bus
inside_subway
library
locker_room
museum
poolinside
prisoncell
subway
trainstation

waitingroom

accuracy
0.445652
0.826087
0.777778
0.297872
0.326316
0.552083
0.494845
0.554348
0.287234
0.404494
0.391304
0.638298
0.428571

0.466667

precision
0.303704
0.589147
0.804598
0.509091
0.885714
0.464912
0.888889
0.320755
0.415385
0.923077
0.666667
0.314136
0.364486

0.567568

recall F1score
0.445652 0.361233
0.826087 0.687783
0.777778 0.790960
0.297872 0.375839
0.326316 0.476923
0.552083 0.504762
0.494845 0.635762
0.554348 0.406374
0.287234 0.339623
0.404494 0.562500
0.391304 0.493151
0.638298 0.421053
0.428571 0.393939

0.466667 0.512195

TP

a1

76

70

28

31

53

48

51

27

36

36

60

39

42

FP
94
53

17
27
4
61
6

108

38
3
18

131
68
32

TN
1112
1153
1191
1177
1199
1141
1195
1098
1166
1206
1188
1073
1139

1176

FN
51
16
20
66
64
43
49
41
67
53
56
34
52

48

TABLE S7: Performance Metrics for Task 4 Merged Model

category
bakery
bookstore
clothingstore
deli

florist
grocerystore
jewelleryshop
laundromat
mall
shoeshop
toystore

videostore

accuracy

0.617021
0.474227
0.494505
0.094737
0.581395
0.595745
0.312500
0.873563
0.619565
0.627660
0.375000

0.105882

precision
0.355828

0.541176
0.542169
0.214286
0.980392
0.430769
0.315789
0.926829
0.600000
0.366460
0.514286

0.180000

recall F1score TP

0.617021 0.451362
0.474227 0.505495
0.494505 0.517241
0.094737 0.131387
0.5681395 0.729927
0.595745 0.500000
0.312500 0.314136
0.873563 0.899408
0.619565 0.609626
0.627660 0.462745
0.375000 0.433735
0.105882 0.133333
116

58
46
45

9
50
56
30
76
57
59
36

9

FP
105
39
38
33
1
74
65
6
38
102
34

41

TN FN

908
971
978
979
1020
939
946
1014
977
911
977

981

36
51
46
86
36
38
66

1
35
35
60
76
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Overlapping Task - 4 : Merged Model (CONFIGURATION 1)
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Figure S1: (a) Confusion Matrix and Performance Metrics for Task 4 Merged Model on entire EMNIST dataset
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Overlapping Task - 5 : Merged Model (CONFIGURATION 1)
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Figure S2: (a) Confusion Matrix and Performance Metrics for Task 5 Merged Model on entire EMNIST dataset
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Overlapping Task - 6 : Merged Model (CONFIGURATION 1)
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Figure S3: (a) Confusion Matrix and (b) Performance Metrics for Task 6 Merged Model on entire EMNIST dataset
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Figure S4: (a) Confusion Matrix and (b) Performance Metrics for Task 7 Merged Model on entire EMNIST dataset
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Overlapping Task - 8 : Merged Model (CONFIGURATION 1)
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Figure S5: (a) Confusion Matrix and (b) Performance Metrics for Task 8 Merged Model on entire EMNIST dataset
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Overlapping Task - 9 : Merged Model (CONFIGURATION 1)
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Figure S6: (a) Confusion Matrix and (b) Performance Metrics for Task 9 Merged Model on entire EMNIST dataset

122



PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS

Overlapping Task - 10 : Merged Model (CONFIGURATION 1)
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Figure S7: (a) Confusion Matrix and (b) Performance Metrics for Task 10 Merged Model on entire EMNIST dataset
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